Innovation In Radiology: A Comprehensive Systematic Review On The Effectiveness Of Technology In Enhancing Diagnostic Capabilities And Patient Outcomes

Anwer Ahmed Shalani¹, Mohammed Ahmed Mokli², Khalid Ali Shibli³, Mohammed Nasser Khawaji⁴, Akrm Hadi Redwan⁵, Mohammed Yahya Mahdi⁶, Abdulelah Hassan Alhathiq⁷, Mahmoud Abduallh Magshi⁸, Ali Ahmed Qadi⁹, Ali Shami Bakari¹⁰, Mohammed Abduallah Alsuwidan¹¹, Ali Omer Jali¹²

¹⁻¹²Radiology Certificate, Sabya Hospital.

Abstract

Background: The health-care sector is using Artificial Intelligence (AI), Chat GPT, and machine learning (ML) to improve diagnostic accuracy and patient outcomes. These technologies offer new opportunities to enhance precision and effectiveness.

Aim: This review aims to investigate how innovative technologies in radiology improve diagnostic accuracy and efficiency compared to traditional methods.

Method: A comprehensive literature (studies included as n = 11) search was conducted in academic databases including Google scholar, Springer link, PubMed, Wiley Online library, and Science Direct using relevant keywords such as "Using innovative technology in radiology can improve patient outcomes," "Patient outcome and radiology," and "radiology technology advancements."

Findings: This approach ensured that important papers published in respected journals were identified and included in the review. Monitoring the impact of AI products in clinical practice is crucial to determine if they improve healthcare in terms of costs and results.

Conclusion: Al has the potential to revolutionize healthcare by enhancing productivity, standardizing quality, and offering accurate prognoses. However, its implementation poses

challenges such as uneven technical performance, gaps in acceptance, and disorganized procedures.

Keywords: innovation technology, diagnostic capabilities, patient outcome and radiology

Introduction

Since its inception, radiology has been a revolutionary journey that has had a tremendous impact on modern medicine. Since the discovery of X-rays and the following development of AI and ML, this diverse field has undergone constant change, both internally and in terms of the healthcare ecosystem it supports. (Najjar, 2023; Alruwaili et al., 2023)

This in-depth analysis examines the interaction between artificial intelligence (AI) and machine learning (ML) in radiology, examining its underlying theories, historical development, realworld uses, intrinsic difficulties, and moral conundrums. The review seeks to promote meaningful dialogues among clinicians, researchers, and policymakers by deepening awareness of AI and ML's contributions to radiology. This will help to shape the field's future and improve patient outcomes. The investigation explores the core ideas of AI and ML, as well as how they are becoming more and more prevalent in radiology. It also looks at workable integration techniques and several case studies from different medical specialties. Moreover, it tackles issues like data quality, ethical considerations, and possible future paths for AI-driven radiography (Najjar, 2023; (AI Ali et al., 2022; Alselaml et al., 2023; Alselami et al., 2023; Alruwaili et al., 2023).

Artificial intelligence (AI) has become a potent instrument in radiology in recent years, providing new opportunities to enhance precision, effectiveness, and patient outcomes. Chat GPT, a big language model developed by Open AI that employs natural language processing (NLP) to analyze and interpret medical images, is one of the most promising artificial intelligence (AI) technologies for medical imaging diagnosis. Because Chat GPT offers a more accurate and efficient method of diagnosing medical images, it has the potential to completely transform the radiology industry. Because of its real-time picture analysis and interpretation capabilities, diagnosing illnesses may take much less time and money, leading to better patient outcomes and lower medical expenses (Srivastav et al., 2023).

A professional non-profit organization, the European Association of Nuclear Medicine (EANM) connects people seeking clinical and research excellence in nuclear medicine globally through communication. Members of EANM are medical professionals with a focus on nuclear medicine research and practice, as well as technologists and scientists. The American Board of Internal Medicine (EANM) will set new standards for nuclear medicine practice regularly to further the field's scientific understanding and raise global patient standards. Every practice guideline has undergone a rigorous consensus process and comprehensive evaluation, serving as a policy statement from the EANM. The EANM acknowledges that particular knowledge, abilities, and techniques are needed for the safe and efficient use of diagnostic nuclear medicine imaging (Lauri et al., 2022).

Assessing the potential impact of artificial intelligence (AI) on the field of radiography by evaluating the workflow, as it currently exists and mapping out possible areas where AI automation may be implemented, like image processing, procedure planning, and picture acquisition. We also emphasize the benefits that AI offers, such as improved patient-facing treatment, more cross-modality training and collaboration, greater technological expertise, and the expansion of radiographer responsibilities into jobs supporting AI-assisted picture reporting and auditing (Hardy & Harvey, 2019).

The application of artificial intelligence (AI) in the health care setting will initially concentrate on automation activities, which will increase diagnostic accuracy and decrease reading time. Numerous studies look into how AI might help cardiac radiologists with their daily work, particularly with segmentation, quantification, and reporting. (Alruwili et al., 2023; Noshili et al., 2023). Furthermore, AI techniques can be applied to optimize image quality and reconstruction. It is becoming more and more crucial for radiologists to be aware of the prospective uses of AI, as these algorithms will be crucial in the field of cardiac radiology. A review of cardiac-related AI applications for CT and MRI investigations, along with non-imaging-based applications for image optimization and reporting, is the primary goal of this study (Assen et al., 2020).

There are currently more than 150 AI radiology products available [3]. These goods are approved for clinical use in the US and Europe, respectively, by the Food and Drug Administration (FDA) or have a European Conformity (CE) marking. Despite the abundance of supply, there is still a dearth of scientific data supporting the effectiveness and significance of these products [4, 5]. According

to a 2020 study, out of 100 AI products examined, only 36 had peer-reviewed data on their effectiveness accessible (Leeuwen et al., 2021).

The technological breakthrough from healthcare digitalization can also overcome additional hurdles when Information Systems (IS) developers can successfully construct AI systems to do certain jobs (Tobore et al., 2019). For instance, AI has the potential to greatly improve patient care and reduce healthcare costs at the same time (Wahl et al., 2018; Dhieb et al., 2020; Kaur et al., 2021; Ali et al., 2023).

Innovative AI solutions are consequently required in the healthcare industry to improve effectiveness and efficiency without increasing costs, as the growing human population is expected to raise the need for healthcare services to be given at a quick speed (Pee et al., 2019; Ali et al., 2023). In this particular domain, artificial intelligence remains a trailblazer in offering inventive resolutions. Quick technical developments, especially in the field of artificial intelligence, have already helped to control the expansion of the healthcare sector (Maduri et al., 2020; Comito et al., 2020; Ali et al., 2023)

METHOD

Research Objective:

The objective of the current systematic review is to evaluate the impact of new innovative technologies on diagnostic capabilities and patient outcomes in radiology units, through a comprehensive systematic review of the existing literature.

Research question:

In this systematic review, the research questions encompass the following inquiries:

1. How do new innovative technologies in radiology units improve diagnostic accuracy and efficiency compared to traditional methods?

2. What impact do new innovative technologies have on patient outcomes in terms of faster diagnosis, reduced radiation exposure, and improved treatment planning in radiology units?

Literature Search Strategy:

For this systematic review, a thorough literature search was conducted in academic databases: Google scholar, Springer link, PubMed, Wiley Online library, and Science Direct. The search strategy included relevant keywords like "Using innovative technology in radiology can improve patient outcomes", "Patient outcome and radiology" and "radiology technology advancements." This approach ensured that important papers published in respected journals were identified and included in the review.

Table 1 Syntax Search

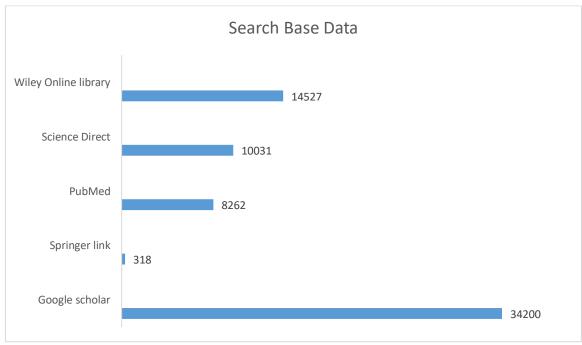
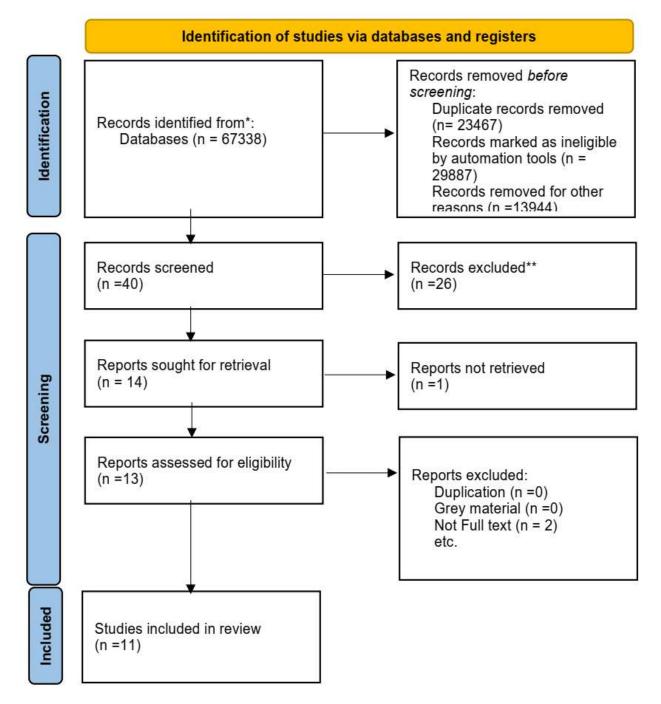

Syntax 1	Using innovative technology in radiology can
	improve patient outcomes
Syntax 2	Radiology technology advancements.

Table 2 Statistics from the Data Base

No	Database	Syntax	Year	No of Researches
1.	Google scholar	Syntax 1	2019-2020	17200
		Syntax 2		17000
2.	Springer link	Syntax 1	2019-2020	111
		Syntax 2		207
3.	PubMed	Syntax 1	2019-2020	254
		Syntax 2		8008
4.	Science Direct	Syntax 1	2019-2020	3559
		Syntax 2		6472
5.	Wiley Online library	Syntax 1	2019-2020	2,984
	,	Syntax 2		11,543

Four prominent databases were used to discover relevant research publications: Google scholar, Springer link, PubMed, Wiley Online library, and Science Direct the chosen search to assure validity and applicability focused on papers issued during 2019 and 2024. According to the statistics, Science Direct produced the most

significant research articles totaling 10031, PubMed contributed 8262 pieces of research, Wiley Online library contributed 14527, while google scholar contributed 34200 and springer link contributed 318. These findings demonstrate how carefully we searched for scientific information, setting a strong base for the next stages of the review.


Figure 1

Graphic representation of search database according to different search engines.

Inclusion and Exclusion Criteria

The Studies conducted between 2019-2024, focusing on innovative technology in radiology units, examining diagnostic capabilities and patient outcomes. In addition, with the Exclusion: No outdated studies, unrelated research, studies outside radiology units, or those lacking relevant data or strong methodology.

PRISMA diagram based Representation of Studies Included

Quality Assessment

The quality and potential biases of the studies included were evaluated using suitable assessment tools specific to various study designs. This approach ensured that the research provided concise and trustworthy information.

Sr #	Author	Are the selection of studies described appropriately	Has the literature covered all relevant studies	Does the method section describe?	Were findings clearly described?	Quality rating
	Coccia, 2020	Yes	Yes	Yes	Yes	High
	Bi et al., 2019	Yes	Yes	Yes	Yes	High
	Hardy & Harvwy, 2019	Yes	Yes	Yes	Yes	High
	Van et al., 2022	Yes	Yes	Yes	Yes	High
	Jaiman and Urovi, 2020	Yes	Yes	Yes	Yes	High
	Lauri, al., 2022	Yes	Yes	Yes	Yes	High
	Al- Naser 2023	Yes	Yes	Yes	Yes	High
	Berbís et al.,2023	Yes	Yes	Yes	Yes	High
	Ilhan et al., 2020	Yes	Yes	Yes	Yes	High
	Lee & Yoon, 2021	Yes	Yes	Yes	Yes	High
	Strohm et al., 2023	Yes	Yes	Yes	Yes	High

Table 3 Assessment of the literature quality matrix

The systematic review thoroughly outlined the studies, including clear descriptions, methods, selection processes, literature coverage, and definitive conclusions, earning them a "Good" quality rating.

PRISMA diagram based Representation of Studies Included

Study Selection

In the data search process, we identify, track, maintain, develop, and combine concepts. We begin by setting criteria for including and excluding studies, and then we identify search engines and select relevant studies. We utilize databases, libraries, and search engines for this purpose.

No	Author	Research	Year
1.	Coccia, M,	Deep learning	2020
	(2020)	technology for	
		improving cancer care in	
		society: New directions	
		in cancer imaging driven	
		by artificial intelligence.	
2.	Bi, W. et al.,	Artificial intelligence in	2019
	(2019).	cancer imaging: clinical	
		challenges and	
		applications.	
3.	•	Artificial intelligence in	2020
	Harvey, H.	diagnostic imaging:	
	(2020).	impact on the	
		radiography profession.	
4.	Van Leeuwen	How does artificial	2021
	et al., (2021).	intelligence in radiology	
		improve efficiency and	
		health outcomes.	
5.	Jaiman, V., &	A consent model for	2020
	Urovi, V.	blockchain-based health	
	(2020).	data sharing platforms.	
6.	Lauri, C., et	Evidence-based	2022
	al., (2022).	guideline of the	
		European Association of	
		Nuclear Medicine	
		(EANM) on imaging	
		infection in vascular	
		grafts.	

7.	Al-Naser, Y. A. (2023).	The impact of artificial intelligence on radiography as a profession: A narrative review.	2023
8.	Berbís, M. A., et al., (2023).	Clinical impact of artificial intelligence- based solutions on imaging of the pancreas and liver.	2023
9.	Ilhan, B., et al., (2020).	Improving oral cancer outcomes with imaging and artificial intelligence.	2020
10	Lee, D., & Yoon, S. N. (2021).	Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges.	2021
11	Strohm, L., et al., (2020).	Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors.	2020

Result Identification of studies via databases and registers

To ensure the accuracy of research methods and their applications, a systematic quality evaluation process should be followed. This includes an overall assessment of the study's quality using data from peer-reviewed publications as well as quality management.

Auth	Aim of study	Method	Sam	Setti	Result
or,		ology	ple	ng	
Year					
	То	Deep	Can	Canc	The results of the
(Cocc	contribute	learning	cer	er	study would likely
ia,	to our	technol	pati	imag	provide insights
2020	understandi	ogy	ents	ing	into the
)	ng of how				transformative
	deep				potential of deep
	learning				learning technology
	technology,				in improving cancer
	particularly				care and imaging
	in the realm				practices, while

(Bi et al., 2019)	of artificial intelligence, can be leveraged to advance cancer care and imaging practices, with the ultimate goal of improving outcomes for individuals affected by cancer within society. To contribute to the understandi ng of the role of artificial intelligence in cancer imaging and to provide insights into the clinical challenges, applications, and implications of AI technologies in oncology practice.	System atic review	16 stud ies	Clini cal setti ng	also acknowledging the complexities and considerations that accompany its integration into clinical settings and broader societal contexts. Results would likely be supported by evidence and references drawn from a wide range of studies and literature in the field of cancer imaging and artificial intelligence.
(Har dy & Harv wy,	To contribute to the understandi	Qualitat ive	Radi ogra phy prof	Hosp ital	The results of the study likely contribute to our understanding of

2019	ng of the		essi		how AI is
)	implications of artificial intelligence for the radiography profession and to provide insights into how radiographe rs can adapt to and leverage Al- driven innovations in diagnostic imaging to improve patient care and outcomes.		onal s		transforming the radiography profession and provide valuable insights for radiography practice, education, and policy development. For specific details and findings from the Hardy and Harvey (2020) study, it would be necessary to refer to the actual publication or relevant summaries.
.(Van et al., 2022).	To our understandi ng of how artificial intelligence in radiology, specifically in the pediatric context, can enhance efficiency and improve health outcomes, while also addressing the practical consideratio ns and challenges associated	Qualitat ive	Inno vati ons over the time	Clini cal	The results of the study likely contribute to our understanding of how artificial intelligence is transforming radiology practice and improving efficiency and health outcomes in pediatric radiology specifically. For specific details and findings from the van leeuwen et al. (2022) study, it would be necessary to refer to the actual publication or relevant summaries.

	with its				
	ion in clinical				
(Jaim an and Urovi , 2020).	implementat	Experim ental evaluati on	Indi vidu al heal th data	Bloc k- chai n base d platf orm	The results of the study would likely contribute to the development of secure, transparent, and patient-centric approaches to health data sharing on blockchain- based platforms. They would provide insights into how consent models can empower individuals to control their health information while facilitating interoperability and compliance with regulatory requirements. For specific details from the jaiman and urovi (2020) study, it would be necessary to refer to the actual publication or
	regulations and				publication or relevant summaries.
	promoting patient- centric				
	approaches to data managemen				
	t and consent.				

				1	
(Laur	То	Picos	Not	Clini	The results of the
i, al.,	contribute	strategy	spec	cal	study would likely
2022	to the		ified	setti	contribute to
).	developmen			ngs	standardizing
	t of				imaging protocols,
	standardized				improving
	and				diagnostic
	evidence-				accuracy, and
	based				optimizing patient
	approaches				management
	to imaging				strategies for
	infection in				vascular graft
	vascular				infections. For
	grafts, with				specific details and
	the ultimate				findings from the
	goal of				lauri et al. (2022)
	improving				study, it would be
	patient care				necessary to refer
	and				to the actual
	outcomes in				publication or
	this clinical				relevant
	context.				summaries.
()]		Narrativ	Not	Cana	The results of the
(Al-	To contribute			Cana	
Nase	to the	e	spec ified	da	study would likely
r		review	mea		contribute to our
2023	understandi				understanding of
)	ng of how				how AI is reshaping
	artificial				the radiography
	intelligence				profession and
	is reshaping				provide valuable
	the				insights for
	radiography				radiography
	profession				practice, education,
	and to				and policy
	provide				development. For
	insights into				specific details and
	the				findings from the
	opportunitie				Al-Naser YA (2023)
	s and				study, it would be
	challenges				necessary to refer
	associated				to the actual
	with the				publication or
	integration				relevant
	of Al				summaries.
	technologies				
	integration				relevant
	technologies				

	radiography		
	practice.		
(Berb ís et al.,20 23).	To contribute to our understandi ng of the clinical impact and potential benefits of artificial intelligence- based solutions in imaging of the pancreas and liver, with the goal of improving diagnostic accuracy, patient outcomes, and healthcare delivery in gastroenter ology and hepatology practice.		The results of the study would likely contribute to our understanding of how ai technologies are transforming the diagnosis, management, and treatment of pancreatic and hepatic diseases through enhanced imaging capabilities. For specific details and findings from the berbís et al. (2023) study, it would be necessary to refer to the actual publication or relevant summaries.
Ilhan et al., 2020	To contribute to the developmen t of advanced imaging and Al-based solutions that can improve the outcomes and quality		These studies show that artificial intelligence methods in conjunction with imaging can significantly influence the course of oral cancer. The applications of this technology range from algorithm-

	of care for patients diagnosed with oral cancer.				guided optical coherence tomography detection of oral lesion heterogeneity and margins to low-cost screening using smartphone-based probes. Through better detection and diagnosis, combined imaging and artificial intelligence techniques can enhance the prognosis for oral cancer.
(Lee & Yoon , 2021)	To contribute to the understandi ng of the potential benefits, limitations, and implications of employing Al-based technologies in the healthcare industry.	Literatu re review and real life settings	Pati ents	Hosp itals	The aim of the study was likely to contribute to a deeper understanding of the role of AI in transforming the healthcare industry and to inform strategies for maximizing the potential benefits of AI while mitigating associated challenges and risks.
Stroh m et al., 2023	To enhance our understandi ng of the complex dynamics surrounding the adoption	Qualitat ive	Not spec ified	Clini cal radi olog y	The aim of the study was likely to provide valuable insights into the complex dynamics surrounding the implementation of Al applications in

and		radiology and to
utilization of		inform strategies
AI		for optimizing the
applications		integration of AI
in radiology,		technologies into
with the		clinical practice
ultimate		while addressing
goal of		associated
improving		challenges and
patient care,		concerns.
diagnostic		
accuracy,		
and		
operational		
efficiency		
within		
healthcare		
settings.		

Discussion

Deep learning technology can benefit pathologists and physicians by improving efficiency, standardizing quality, and providing prognoses that are more precise. Even if deep learning technology is anticipated to revolutionize the organizational workflow of pathologists and other clinicians, pathologists and people in general play a very vital role in patient care and disease treatment. (Coccia, 2020). Whereas also, deep learning technology can help pathologists with their clinical workflow by freeing them up to concentrate on other important choices, such as surgical treatments and/or the assessment of certain anti-cancer medications.(Bi et al., 2019)

If AI-specific training is promoted to support management, supervision, and quality assurance of AI-enabled systems, then opportunities for radiographers to report using AI-assisted methods to meet regulatory reporting requirements and clear reporting backlogs will continue to expand. Radiographers have many opportunities to increase their professional influence, autonomy, and decision-making, but only if they take the initiative to decide, how they want to operate in an AI-enabled workplace. (Hardy & Harvwy, 2019).

The experiences and effects of AI products in clinical practice should be closely examined and monitored in order to gain insight into how they contribute to the initial goals of improving health

care. Then and only then will we be able to demonstrate whether Al is improving health care in terms of both costs and results.(Van et al., 2022).

Notwithstanding the difficulties associated with AI, one of the most significant advantages of this technology is its assistance with preventative care within the healthcare system, which helps all people become and stay healthy. Apps, for instance, have been utilized to provide patients greater control over their health (Jaiman & Urovi, 2020). This has enabled patients to make evidence-based decisions about preventative health issues, like high blood pressure and type 2 diabetes.

The first-line imaging technique for suspected VGEI is computed tomography angiography (CTA), but nuclear medicine modalities are frequently required to confirm or rule out the infection. Although 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has a very high negative predictive value for PET/CT, it should ideally be done at least four months after surgery to prevent false positive results. Due to its high diagnostic accuracy, radiolabelled white blood cell (WBC) scintigraphy can be carried out at any point following surgery. (Lauri al., 2022).

Routine standard radiography protocols can be improved by AI. In addition to automating image processing, it can automatically guarantee the best possible patient positioning within the gantry. Radiologic technologists in practice are encouraged to obtain a certain level of computational and technical literacy in order to operate AI-driven imaging technology as these technologies continue to emerge in diagnostic imaging. (AI-Naser, 2023)

The combination of AI with different imaging modalities has changed the diagnostic paradigm in the specialized domains of hepatology and pancreatology, enabling the diagnosis of liver and pancreatic illnesses. AI has been beneficial for a number of imaging methods, including CT, MR, PET/CT, ultrasound, and endoscopic ultrasonography. AI's impact extends beyond diagnosis, helping to choose the best diagnostic test for each patient based on his or her unique medical profile. AI has also proven crucial in enhancing imaging quality, speeding up picture capture, and forecasting patient prognosis and treatment response. (Bernís et al., 2023).

Simialry, according to Strohm et al., (2020) The Dutch healthcare system's urgency to reduce costs, high expectations for AI's potential benefit, hospital-wide innovation policies, and the presence of a "local champion" were some of the key aspects that made deployment easier. The following were some of the main obstacles: (i) uneven technical performance of AI applications; (ii)

disorganized implementation procedures; (iii) indeterminate benefit for clinical practice of AI applications; and (iv) wide gaps in acceptance and confidence between direct adopters (radiologists) and indirect adopters (referring clinicians).

Oral health care professionals recommend that every patient receive a regular visit that includes a noninvasive visual and tactile examination of the oral mucosa along with a risk factor evaluation for oral illnesses, including OPSCC (American Academy of Oral Medicine 2019).

AI can enhance healthcare provider-patient relationships by supplementing its limitations. Medical school curricula should include AI-related education and technology. To improve accuracy, more precise AI algorithms are needed, necessitating medical staff collaboration. To do so, a highly trained professional team must be created with diverse learning opportunities in advanced technologies. Updated curricula should include technology innovation, data analytics, human-machine convergence, interchange, cyber ethics, and responsibility, creating new job opportunities and enabling healthcare professionals to respond quickly in the consumer-oriented healthcare market. (Lee & Yoon, 2021).

Limitations

- 1. It is essential to ensure that data is unbiased and free from any kind of prejudice.
- The goal of data collection is to obtain accurate information that represents the reality of a situation. However, biases can creep into data collection, which can lead to inaccurate or misleading results.
- 3. Therefore, it is crucial to implement ethical considerations while collecting and analyzing data to eliminate any biases that might exist. By doing so, we can ensure that the data we collect is reliable and unbiased, which can help us make informed decisions based on accurate information.

Recommendations and Implications:

This systematic review underscores the transformative potential of AI and innovative technologies in radiology. To harness these benefits effectively, healthcare stakeholders should consider the following recommendations:

- 1. **Investment in AI Education:** Prioritize education and training programs for healthcare professionals, ensuring they are well versed in AI technologies to maximize their potential in radiology.
- Monitoring and Evaluation: Establish robust systems for monitoring the impact of AI products in clinical practice. Continuous evaluation will provide insights into their effectiveness, cost-efficiency, and contribution to improved healthcare outcomes.
- 3. Ethical Guidelines: Develop and implement ethical guidelines for the use of AI in radiology, addressing issues of bias, data privacy, and patient consent. This will ensure responsible and equitable deployment of AI technologies.
- 4. **Collaboration:** Encourage collaboration between healthcare professionals, researchers, policymakers, and technology developers to foster a multidisciplinary approach in advancing AI applications in radiology.

Contribution to Existing Literature:

This research contributes to existing literature by consolidating evidence on the impact of innovative technologies in radiology. The comprehensive systematic review bridges gaps in knowledge by synthesizing findings from diverse studies, providing a nuanced understanding of the current landscape, challenges, and opportunities in Al-driven radiology.

Significance for KSA:

In the context of the Kingdom of Saudi Arabia (KSA), this research holds particular significance. As KSA continues to invest in healthcare infrastructure and technological advancements, the insights gained from this systematic review can guide the integration of AI in radiology practices. The recommendations align with KSA's vision for a technologically advanced healthcare system, ensuring that AI is implemented responsibly and effectively to enhance patient care outcomes.

Conclusion

AI has the potential to revolutionize health-care by standardizing quality, enhancing productivity, and offering prognoses that are more accurate. Pathologists and other health-care professionals can benefit from AI-assisted methods that enable them to focus on crucial decisions like surgical interventions and the evaluation of particular anti-cancer drugs. AI can also help radiographers report using AI-assisted methods to meet regulatory reporting

requirements and clear reporting backlogs. However, AI's implementation poses challenges such as uneven technical performance, disorganized implementation procedures, and gaps in acceptance and confidence among healthcare professionals. Therefore, it is crucial to closely monitor the experiences and effects of AI products in clinical practice to gain insight into how they contribute to the initial goals of improving healthcare. By doing so, we can demonstrate whether AI is improving healthcare in terms of both costs and results.

References

- AL ALI, Y. T., AL QAHTANI, A. A., ASSIRI, H. Y., ALYAHYA, A. M., AL ALKHARSH, F. S., ASSIRI, A. Y., ... & ALASIRI, Y. H. (2022).
 Effectiveness Of Technology On Organizational Development And Services In The Saudi Health Sector. Journal of Pharmaceutical Negative Results, 2144-2155.
- Almutairi, S. M., Noshili, A. I., Almani, H. A., Aldousari, N. Y., Aljedani, G. H., Bakhsh, A. A., ... & Shahbal, S. (2022). The Magnet Hospital Concept is an Ideological Approach to Job Satisfaction and Quality of Care: A Systematic Review. Journal of Positive Psychology and Wellbeing, 137-145.
- Al-Naser YA. The impact of artificial intelligence on radiography as a profession: A narrative review. J Med Imaging Radiat Sci. 2023 Mar;54(1):162-166. doi: 10.1016/j.jmir.2022.10.196. Epub 2022 Nov 12. PMID: 36376210.
- Alruwaili, M. A., Ali, R. M., Shahbal, S., Alotaibi, S. G., Althiyabi, N. A., Aldosari, M. K., ... & Alharthi, F. M. (2023). Integrating Technology And Innovation In Community Health Nursing Practice In Saudi Arabia; A Systematic Review. Journal of Namibian Studies: History Politics Culture, 35, 2829-2852.
- Alruwili, T. O., Batool, R., Kariri, M. E., Alanazi, B. A., Almutairi, A. M., Albalawi, R. S., ... & Alharbi, R. M. (2023). STRATEGIES AND TECHNOLOGIES TO PREVENT HOSPITAL-ACQUIRED INFECTIONS: LESSONS FROM SARS, EBOLA, AND MERS IN SAUDI ARABIA; A SYSTEMATIC REVIEW. Journal of Population Therapeutics and Clinical Pharmacology, 30(17), 1225-1236.
- Alselaml, M. M. A., Shahbal, S., Alharbi, A. M. A., Al-Bishri, K. O. E., Alhrbi, S. E. M., Allehyani, A. A., ... & Al Sharif, K. A. (2023). Enhancing Patient-Centered Care IN Primary Nursing Strategies, Cultural Competence, AND Shared Decision-Making; Systematic Review Findings. Journal of Namibian Studies: History Politics Culture, 37, 80-105.
- Berbís, M.A.; Godino, F.P.; Del Val, J.R.; PMata, L.A.; Luna, A. Clinical impact of artificial intelligence-based solutions on imaging of

the pancreas and liver. World J. Gastroenterol. **2023**, 29, 1427–1445.

- Bi W. L., Hosny A., Schabath M. B., Giger M. L., Birkbak N. J., Mehrtash A., Allison T., Arnaout O., Abbosh C., Dunn I. F., Mak R. H., Tamimi R. M., Tempany C. M., Swanton C., Hoffmann U., Schwartz L. H., Gillies R. J., Huang R. Y., Aerts H. J. W. L., 2019. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications, CA Cancer J Clin, 0:1–31, doi: 10.3322/caac.21552.
- Coccia, M. (2020). Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 60, 101198.
- Hardy M, Harvey H. Artificial intelligence in diagnostic imaging: impact on the radiography profession. Br J Radiol. 2020 Apr;93(1108):20190840. doi: 10.1259/bjr.20190840. Epub 2019 Dec 16. PMID: 31821024; PMCID: PMC7362930.
- Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence. J Dent Res. 2020 Mar;99(3):241-248. doi: 10.1177/0022034520902128. PMID: 32077795; PMCID: PMC7036512.
- Lauri C, Signore A, Glaudemans AWJM, Treglia G, Gheysens O, Slart RHJA, lezzi R, Prakken NHJ, Debus ES, Honig S, Lejay A, Chakfé N. Evidence-based guideline of the European Association of Nuclear Medicine (EANM) on imaging infection in vascular grafts. Eur J Nucl Med Mol Imaging. 2022 Aug;49(10):3430-3451. doi: 10.1007/s00259-022-05769-x. Epub 2022 Apr 4. PMID: 35376992; PMCID: PMC9308572.
- Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. International Journal of Environmental Research and Public Health, 18(1), 271.
- Najjar, R. (2023). Redefining radiology: a review of artificial intelligence integration in medical imaging. Diagnostics, 13(17), 2760.
- Noshili, A. I., Almutairi, F. A., Shahbal, S., Alotaibi, F. A., Aldhafeeri, B., Refaei, R. A. A., ... & Alzauri, F. H. (2023). Systematic Review Are We Ready for New Emerging Infection Candida Auris; Review of Preparedness Measure and Strategies for Infection Prevention in the Saudi Arabian Health System. Migration Letters, 20(S1), 678-697.
- Srivastav, S., Chandrakar, R., Gupta, S., Babhulkar, V., Agrawal, S., Jaiswal, A., ... & Wanjari, M. (2023). ChatGPT in radiology: the advantages and limitations of artificial intelligence for medical imaging diagnosis. Cureus, 15(7).

- Strohm, L., Hehakaya, C., Ranschaert, E. R., Boon, W. P., & Moors, E. H. (2020). Implementation of artificial intelligence (AI) applications in radiology: hindering and facilitating factors. European radiology, 30, 5525-5532.
- Tobore, I., Li, J., Yuhang, L., Al-Handarish, Y., Kandwal, A., Nie, Z., & Wang, L. (2019). Deep learning intervention for health care challenges: some biomedical domain considerations. JMIR mHealth and uHealth, 7(8), e11966.
- V. Jaiman and V. Urovi, "A Consent Model for Blockchain-Based Health Data Sharing Platforms," in IEEE Access, vol. 8, pp. 143734-143745, 2020, doi: 10.1109/ACCESS.2020.3014565. keywords: {Data models;Peer-to-peer computing;Distributed databases;Ontologies;Blockchain;data sharing;distributed ledgers;EHR exchange;individual consent},
- van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, De Cecco CN. Artificial intelligence in cardiac radiology. Radiol Med. 2020 Nov;125(11):1186-1199. doi: 10.1007/s11547-020-01277-w. Epub 2020 Sep 18. PMID: 32946002.
- van Leeuwen, K.G., de Rooij, M., Schalekamp, S. et al. How does artificial intelligence in radiology improve efficiency and health outcomes?. Pediatr Radiol **52**, 2087–2093 (2022). <u>https://doi.org/10.1007/s00247-021-05114-8</u>