Exploring The Challenges And Advantages Of Electronic Health File Systems: A Systematic Review

Ohoud Jazi Alhumairan¹, Munira Murshid Al-Harbi², Sarah Fahad Almutairi³, Aisha Nashi Alrashedi⁴, Norah Shujja Alsubaie⁵, Ahoud Salem Alanazi⁶, Fatimah Omar Alboqami⁷, Jamila Abdulaali Almutairi⁸, Amal Abdulali Almutairi⁹, Haya Mohammed Albogami¹⁰

¹Al Saada Health Center.
²Al Yamamah Hospital.
³Alnahadh Western Primary Health Care Centre.
⁴Al Yamamah Hospital.
⁵Specialized Dental Center, Riyadh.
⁶Anahadh Western Primary Health Care Centre.
⁷Anhadah Western Primary Health Care Centre.
⁸Al Yamamah Hospital.
⁹Senior Socail Specialist, Al Yamamah Hospital.
¹⁰Al Yamamah Hospital.

Abstract

Background: Electronic Health Records (EHRs) play a crucial role in modern healthcare by providing a digital repository for patient information. However, the adoption and optimization of EHR systems present various challenges to healthcare organizations. Understanding these challenges and potential solutions is essential for improving the efficiency and effectiveness of EHR utilization.

Aim: This study aims to comprehensively examine the challenges and potential solutions related to Electronic Health Record (EHR) utilization in healthcare settings. **Method:** A systematic review of existing literature was conducted to identify key themes and trends in EHR research. 10 studies focusing on challenges, solutions, and best practices for EHR utilization were included in the analysis.

Results: The study identified several common challenges faced by healthcare organizations in EHR utilization, including issues related to data quality, usability, privacy, interoperability, and adoption. Various potential solutions, such as the adoption of emerging technologies like block chain and data mining, were also discussed.

Conclusion: Electronic Health Records (EHRs) offer immense potential for improving patient care and healthcare delivery. However, the challenges associated with EHR utilization must be addressed to maximize their benefits. Collaborative efforts between policymakers, healthcare providers, and technology vendors are essential to overcome these challenges and optimize EHR utilization.

Keywords: Electronic Health Records (EHRs), healthcare technology, data quality, usability, privacy, interoperability, adoption, block chain, data mining.

Introduction

Electronic Health Record (EHR) systems have emerged as a cornerstone of modern healthcare, offering a digital platform for storing, managing, and sharing patient information across various healthcare settings (Mahajan et al., 2022). The adoption of EHR systems has been driven by the promise of improved patient care, enhanced care coordination, and increased operational efficiency (Parameshwari et al., 2022). However, as healthcare organizations transition from paper-based records to electronic systems, they encounter a myriad of challenges and opportunities inherent in this digital transformation (Shaikh et al., 2022). Understanding these challenges and advantages is essential for optimizing the implementation and utilization of EHR systems in healthcare delivery. (Alruwaili et al., 2023).

One of the primary challenges in the adoption of EHR systems is interoperability, or the ability of different systems to exchange and use data seamlessly. Interoperability gaps can lead to fragmented patient records, hindering care coordination and compromising patient safety (Zheng et al., 2020). Moreover, ensuring the security and privacy of electronic health files presents a significant concern, as healthcare data is increasingly targeted by

cyber threats (Nakajjubi et al., 2022). Robust data security measures, such as encryption and access controls, are essential for safeguarding patient information and maintaining compliance with healthcare regulations (Marwaha et al., 2022).

User interface design also plays a critical role in the usability and effectiveness of EHR systems. Poorly designed interfaces can impede workflow efficiency and contribute to user frustration, potentially compromising the quality of patient care (Nautiyal et al., 2023). Additionally, the implementation costs associated with acquiring and maintaining EHR systems can be substantial, particularly for small healthcare practices with limited resources (Puneeth & Parthasarathy, 2023). Overcoming these financial barriers requires careful planning and consideration of long-term return on investment (Verdonck & Poels, 2020).

Despite these challenges, EHR systems offer a range of advantages that can significantly enhance healthcare delivery (Rui et al., 2023). Improved access to patient information enables healthcare providers to make more informed clinical decisions and deliver more personalized care. Furthermore, EHR systems facilitate communication and collaboration among members of the healthcare team, leading to better care coordination and improved patient outcomes (Deepa & Arya, 2022). Clinical decision support tools integrated into EHR systems provide real-time guidance to healthcare providers, helping to reduce medical errors and improve patient safety (Perugu et al., 2022).

Moreover, EHR systems have the potential to enhance efficiency and productivity in healthcare settings. Features such as electronic prescribing, automated reminders, and streamlined documentation workflows streamline administrative tasks and allow healthcare providers to focus more time on patient care (Kaihlanen et al., 2022). Additionally, the data generated by EHR systems can be leveraged for analytics purposes, enabling healthcare organizations to identify trends, monitor population health metrics, and optimize resource allocation (Murala et al., 2023). This data-driven approach has the potential to transform healthcare delivery by enabling more proactive and personalized care (Girolami et al., 2022).

While electronic health file systems present numerous challenges, such as interoperability, data security, usability, and cost, they also offer significant advantages in terms of improved

access to patient information, enhanced communication, clinical decision support, and efficiency gains. (Mishra et al., 2023). Understanding and addressing these challenges and advantages are essential for realizing the full potential of EHR systems in transforming healthcare delivery and improving patient outcomes.

Significant of Study

This systematic review on the challenges and advantages of electronic health file systems is of paramount significance in guiding healthcare organizations, policymakers, and technology developers toward informed decision-making and strategic planning (Dinesh & Indrajith, 2023). By synthesizing existing literature, this study sheds light on the multifaceted landscape of EHR implementation, addressing critical issues such as interoperability, data security, usability, and cost-effectiveness. Its findings provide valuable insights into the opportunities and barriers associated with EHR adoption, enabling stakeholders to formulate evidence-based strategies for optimizing the implementation and utilization of electronic health record systems. Ultimately, this research contributes to the advancement of healthcare delivery by facilitating the realization of the full potential of EHR systems in improving patient care, enhancing care coordination, and driving operational efficiency.

Aim of Study

The aim of this systematic review is to comprehensively examine the challenges and advantages inherent in electronic health file systems. By synthesizing existing literature, the study seeks to identify key barriers and opportunities associated with the implementation and utilization of electronic health record (EHR) systems in healthcare delivery. Through a rigorous analysis of factors such as interoperability, data security, usability, and costeffectiveness, the research aims to provide valuable insights to inform evidence-based decision-making and strategic planning for healthcare organizations, policymakers, and technology developers. Ultimately, the study aims to contribute to the advancement of healthcare delivery by facilitating the optimization of EHR systems to improve patient care, enhance care coordination, and drive operational efficiency.

Objective

- To systematically identify and analyze challenges such as interoperability issues, data security concerns, usability barriers, and cost implications in electronic health file systems.
- To critically evaluate advantages including improved access to patient information enhanced communication and collaboration, clinical decision support capabilities, and efficiency gains in electronic health file systems.

Method

Identification of Research question

The research question driving the present systematic review revolves around comprehensively exploring the challenges and advantages associated with electronic health file systems (Al-Kaabi & Abdullah, 2023). This inquiry seeks to delve into the complexities surrounding the implementation and utilization of electronic health record (EHR) systems in healthcare settings. By synthesizing existing literature and analyzing factors such as interoperability, data security, usability, and cost-effectiveness, the study aims to address overarching questions regarding the obstacles hindering effective EHR implementation and the potential benefits these systems offer in optimizing healthcare delivery. Ultimately, the research question aims to provide insights that can inform evidence-based decision-making and strategic planning for healthcare organizations, policymakers, and technology developers, contributing to the advancement of healthcare delivery and improved patient outcomes.

Research	In healthcare settings (P), does the
question	adoption of electronic health file systems
	(I) compared to traditional paper-based or
	alternative electronic record-keeping
	systems (C) affect challenges and
	advantages such as interoperability, data
	security, usability, cost-effectiveness,
	access to patient information,
	communication, clinical decision support,

		and efficiency (O) within the present and		
		recent past perspectives (T)??		
Р	Population	Healthcare professionals and		
		organizations implementing or		
		considering electronic health record (EHR)		
		systems.		
I.	Intervention	Adoption and utilization of electronic		
		health file systems.		
С	Comparison	Traditional paper-based record-keeping		
		systems or alternative electronic record		
		systems.		
0	Outcome	Assessment of challenges and advantages		
		associated with electronic health file		
		systems, including interoperability, data		
		security, usability, cost-effectiveness,		
		improved access to patient information,		
		enhanced communication and		
		collaboration, clinical decision support		
		capabilities, and efficiency gains.		
т	Timeframe	Over a specified period OF 2019 - 2023,		
		reflecting current perspectives and trends		
		in EHR implementation and utilization.		

What are the challenges and advantages associated with electronic health file systems compared to traditional paper-based or alternative electronic record-keeping systems in healthcare settings?

Explanation: The research question driving this systematic review focuses on comprehensively exploring the challenges and advantages of electronic health file systems relative to traditional paper-based or alternative electronic record-keeping systems in healthcare settings. It aims to delve into the complexities surrounding the implementation and utilization of electronic health record (EHR) systems, synthesizing existing literature and analyzing factors such as interoperability, data security, usability, and cost-effectiveness. By addressing overarching questions about the obstacles hindering effective EHR implementation and the potential benefits these systems offer in optimizing healthcare delivery, the study aims to inform evidence-based decision-making

and strategic planning for healthcare organizations, policymakers, and technology developers. Ultimately, it contributes to the advancement of healthcare delivery and improved patient outcomes.

Selection Criteria

Inclusion Criteria

- Research conducted within the past five years (2019-2023).
- Studies focusing on electronic health record (EHR) systems and electronic health file systems.
- Research exploring challenges and advantages associated with EHR implementation and utilization.
- Studies examining factors such as interoperability, data security, usability, and cost-effectiveness of electronic health file systems.
- Research assessing the impact of electronic health files systems on access to patient information, communication, clinical decision support, and efficiency in healthcare settings.

Exclusion Criteria

- Studies conducted outside the specified timeframe of 2019-2023.
- Research not specifically related to electronic health record (EHR) systems or electronic health file systems.
- Studies unrelated to challenges and advantages associated with EHR implementation and utilization.
- Research focusing solely on technical aspects of EHR systems without addressing broader implications for healthcare delivery.
- Studies not examining factors such as interoperability, data security, usability, or cost-effectiveness of electronic health file systems.
- Research not assessing the impact of electronic health files systems on access to patient information, communication, clinical decision support, or efficiency in healthcare settings.

Database Selection

For the systematic review on exploring the challenges and advantages of electronic health file systems, a thorough search was conducted across multiple academic databases, including PubMed, Scopus, Web of Science, and Google Scholar. The search strategy incorporated keywords related to electronic health record (EHR) systems, encompassing aspects such as implementation challenges ("EHR implementation"), interoperability ("Interoperability"), data security ("Data security"), usability ("Usability"), cost-effectiveness ("Cost-effectiveness"), access to patient information ("Access to patient information"), communication ("Communication in healthcare"), clinical decision support ("Clinical decision support"), and efficiency in healthcare ("Efficiency in healthcare"). Additionally, terms representing healthcare professionals ("Healthcare professionals," "Medical staff," "Nurses," "Physicians," "Health information managers," "Health informaticians") were included. Boolean operators were utilized to combine these terms effectively, narrowing the search to relevant studies. Geographical focus was incorporated as needed, with a particular interest in studies conducted within the past five years (2019-2023). The search aimed to provide a comprehensive analysis of the obstacles and benefits associated with electronic health file systems, informing evidence-based strategic planning for decision-making and healthcare stakeholders.

Data Extracted

Data were extracted from the four selected databases, namely PubMed, Scopus, Web of Science, and Google Scholar, using the four syntaxes identified for the search. Syntax 1 focused on terms related to electronic health record (EHR) systems, Syntax 2 emphasized geographical relevance, Syntax 3 targeted healthcare professionals' perspectives, and Syntax 4 included specific terms for outcomes or other relevant factors. Each syntax was applied systematically to ensure comprehensive coverage of the literature. The extracted data encompassed studies conducted within the specified timeframe (2019-2023) and provided insights into the challenges and advantages associated with electronic health file systems, contributing to the systematic review's objectives.

Syntax

Syntax 1	"Electronic health record systems" OR "Electronic				
	health file systems" OR "EHR implementation" OR				
	"EHR challenges" OR "EHR advantages" OR				
	"Interoperability" OR "Data security" OR "Usability"				
	OR "Cost-effectiveness" OR "Access to patient				
	information" OR "Communication in healthcare" OR				
	"Clinical decision support" OR "Efficiency in				
	healthcare"				
Syntax 2	"Healthcare professionals" OR "Medical staff" OR				
	"Nurses" OR "Physicians" OR "Health information				
	managers" OR "Health informaticians				
Syntax 3	Patient outcomes" OR "Healthcare system				
	resilience				

In the study, four syntaxes were employed to systematically search for relevant literature on electronic health file systems. Syntax 1 encompassed keywords related to electronic health record (EHR) systems, including implementation challenges and advantages, interoperability, data security, usability, cost-effectiveness, access to patient information, communication, clinical decision support, and efficiency in healthcare. Syntax 2 targeted perspectives of healthcare professionals, incorporating terms such as medical staff, nurses, physicians, health information managers, and health informaticians. Finally, Syntax 3 included specific terms related to outcomes or other relevant factors, such as patient outcomes and healthcare system resilience. These syntaxes were systematically applied to ensure comprehensive coverage of the literature and to address various aspects of electronic health file systems within the study's scope.

Literature Search

For the present study, a comprehensive literature search was conducted across major academic databases, including PubMed, Scopus, Web of Science, and Google Scholar. Keywords related to electronic health record (EHR) systems were systematically employed to retrieve relevant studies addressing challenges and advantages associated with electronic health file systems. Boolean operators were utilized to combine search terms effectively,

ensuring a thorough exploration of the literature. The search strategy aimed to capture a diverse range of perspectives and insights on EHR implementation, interoperability, data security, usability, cost-effectiveness, access to patient information, communication, clinical decision support, and efficiency in healthcare. By accessing these reputable academic databases, the study sought to gather high-quality evidence to inform its systematic review on electronic health file systems.

No	Database	Syntax	Year	No of
				Researches
		Syntax 1		
1	PubMed	Syntax 2		7,520
		Syntax 3		
		Syntax 1		
2	Scopus	Syntax 2	23	6,450
		Syntax 3	- 20	
		Syntax 1	- 11	
3	Web of	Syntax 2	20:	7,250
	Science	Syntax 3		
4	Google	Syntax 1		
	scholar	Syntax 2		6,280
		Syntax 3		

Table 1 presents the database statistics for the literature search conducted in the present study. The search covered four major academic databases: PubMed, Scopus, Web of Science, and Google Scholar. For each database, the number of research articles retrieved within the specified timeframe (2019-2023) using Syntax 1 was recorded. PubMed yielded the highest number of research articles, with 7,520 articles retrieved, followed by Web of Science with 7,250 articles. Data for Syntax 2 and Syntax 3 were not provided in the table. These statistics provide an overview of the breadth of literature available for the systematic review on electronic health file systems.

Selection of Studies

In the present study, data extraction followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic search was conducted across PubMed, Scopus, Web of Science, and Google Scholar using predefined keywords related to electronic health record (EHR) systems. Boolean operators were applied to combine search terms effectively, focusing on challenges and advantages associated with EHR implementation. Relevant studies conducted within the past five years (2019-2023) were included.

In the present systematic review, records were identified from four databases and four registers, resulting in 27,500 studies obtained.

Identification of studies via databases and registers

Before screening, 12,850 duplicate records were removed, along with 7,509 records marked as ineligible by automation tools, and 7,341 records removed for other reasons. Screening involved reviewing 60 records, leading to the exclusion of 15 records. Subsequently, reports were sought for retrieval for 45 records, of which 15 reports were not retrieved. Reports assessed for eligibility numbered 30, with 12 excluded due to being grey literature, 10 due to not being full-text articles, and 8 due to a language barrier. Ultimately, the review included 10 studies, providing a detailed analysis of the challenges and advantages associated with electronic health file systems.

Quality Assessment of Studies

The quality assessment of studies in the present study involved rigorous evaluation criteria tailored to assess the methodological soundness and relevance of each included study. Criteria such as study design, sample size, data collection methods, analysis techniques, and reporting transparency were systematically applied to ensure the reliability and validity of the findings. By employing standardized assessment tools and expert judgment, the study aimed to identify high-quality research contributing to the robustness of the systematic review on electronic health file systems.

#	Author	Are the selection of studies described and appropriat e	Is the literature covered all relevant studies	Does method section describe d.	Was findings clearly described ?	Qualit Y rating
1	Holmes et al	YES	Yes	Yes	Yes	Good
2	Taksler et al	Yes	Yes	Yes	Yes	Good
3	Molebatsi	Yes	Yes	Yes	Yes	Good
4	Mahajan	Yes	Yes	No	Yes	Fair

Table 2: Assessment of the literature quality matrix

5	Chenthara et al	Yes	Yes	Yes	Yes	Good
6	Pilares et al	Yes	Yes	Yes	Yes	Good
7	Al Ani et al	Yes	No	Yes	Yes	Fair
8	Kalkhajeh et al	NO	Yes	Yes	Yes	Good
9	Sarwar et al	Yes	Yes	Yes	Yes	Good
1 0	Shahnaz et al	Yes	Yes	Yes	Yes	Good

Table 2 presents the quality assessment matrix for the literature included in the present study. Each study was evaluated based on criteria such as the description and appropriateness of the study selection, coverage of relevant literature, clarity of the method section, and the completeness of findings description. The quality rating assigned to each study ranged from "Good" for studies meeting all evaluation criteria to "Fair" for those with minor deficiencies in method description or literature coverage. Notably, some studies received lower ratings due to inadequacies in either literature coverage or method description, highlighting the importance of transparent reporting and comprehensive study design in ensuring the credibility of research findings.

Data Synthesis

The data synthesis based on Table 3: Research Matrix involves the consolidation of findings from each study to identify common themes, patterns, and discrepancies regarding the challenges and advantages of electronic health file systems. Authors' aims and methods are considered to contextualize their findings, while the sample size and sampling methods provide insights into the generalizability of results. Key findings, such as identified challenges in interoperability or benefits in clinical decision support, are analyzed across studies to generate comprehensive insights. Additionally, suggestions provided by authors offer valuable recommendations for addressing identified challenges and maximizing the benefits of electronic health file systems in healthcare settings, ultimately informing evidence-based decision-making and future research directions.

Table 3: Research Matrix

Author, Year	Aim	Method	Sample Size, Sampling	Key Findings	Suggestion
Holmes, J. H.,	To comprehensively	Involved a panel of 24	Sampling: Panel	Shared knowledge and	Provide valuable
Beinlich, J.,	address the	biomedical informatics	members affiliated with	experiences through 20	perspectives and
Boland, M. R.,	challenges posed by	researchers, information	Penn Medicine at the	short essays, each	recommendations
Bowles, K. H.,	electronic health	technology professionals,	University of	representing a specific	for optimizing EHR
Chen, Y., Cook,	records (EHR) to	and clinicians with	Pennsylvania,	challenge classified into	utilization in
T. S., &	clinical and research	extensive experience in	experienced with various	facets such as usability,	clinical and
Moore, J. H.	users.	EHR systems.	EHR platforms and	data quality, standards,	research contexts.
(2021).			systems.	governance, and clinical	
				care.	
Taksler, G. B.,	To address	Describes considerations	Focus is on	Emphasizes the need to	Proposes solutions
Dalton, J. E.,	challenges and	and solutions for	methodological	define patient	for researchers
Perzynski, A.	provide potential	commonly encountered	considerations rather	subpopulations, reliably	planning to use
T., Rothberg,	solutions for	problems when working	than empirical research.	identify primary care	EHR data,
М. В.,	adapting electronic	with large-scale, EHR-		providers, account for	highlighting the
Milinovich, A.,	health records (EHRs)	derived data.		changes in health system	importance of
Krieger, N. I.,	for health services			composition and	understanding the
& Einstadter,	and community-			treatment options, and	intricacies of EHR
D. (2021).	relevant health			address challenges in	data for informed
	research.			data organization and	analysis and
				accuracy within EHRs.	interpretation of
					results.
Molebatsi, D.	To assess the impact	Utilized descriptive and	Total population of 145,	Revealed poor	Participants
G. (2020).	of electronic filing	inferential statistics	with 113 participants	management of patient	expressed
	systems on patient	through a quantitative	comprising both clinical	medical records, with	willingness to
	management	approach, employing a	staff members and	staff receiving only basic	adopt electronic
	effectiveness in a	questionnaire with	healthcare users sampled	training. Challenges with	medical records,
	selected public	closed-ended questions	from the facility.	electronic medical	emphasizing
	healthcare facility.	and one open-ended		records included lack of	benefits such as
		question. Non-probability		user-system skills,	reduced queues,
		sampling technique was		difficult systems, and	increased access
		used, with a research		offline systems.	and privacy, and

		sample drawn from a public healthcare facility in the Northern Cape Province			improved service quality if implemented by the facility
Mahajan, H. B. (2022).	To systematically study block chain- based solutions for secure cloud-based electronic health records systems in the context of Healthcare 4.0.	Reviewed recent block chain-based security solutions for Healthcare 4.0 systems, identified research gaps, challenges, and proposed future roadmap or solutions.	The study focuses on reviewing existing literature and proposing future directions rather than empirical research with a sample size.	Highlighted the importance of block chain-based security solutions for medical records storage and sharing, emphasizing the need for strong security provisions without compromising computational efficiency.	Proposed a future roadmap for implementing block chain-based secure healthcare systems, addressing current research gaps and challenges to ensure the integrity and privacy of patient medical data.
Chenthara, S., Ahmed, K., Wang, H., & Whittaker, F. (2019).	To review security and privacy- preserving challenges in e-health solutions and propose directions for comprehensive security models for electronic health records (EHRs).	Conducted a systematic review of papers on EHR approaches published between 2000 and 2018, sourced from IEEE, Science Direct, Google Scholar, PubMed, and ACM. Summarized articles in terms of architecture types and evaluation strategies.	the study is a review of existing literature rather than empirical research with a sample size.	Identified tasks including EHR security and privacy, requirements of e-health data security and privacy in the cloud, EHR cloud architecture, and diverse cryptographic and non- cryptographic approaches for EHR security.	Urged for research focusing on efficient comprehensive security mechanisms for EHRs, emphasizing the need to maintain the integrity and confidentiality of patients' information in the face of big data challenges.
Pilares, I. C. A., Azam, S.,	To address challenges of	Conducted a systematic review to identify causes	the study is a review and proposal rather than	Identified major challenges in EHR	Suggested the adoption of

Akbulut, S.,	electronic health	of slow FHR adoption.	empirical research with a	adoption and	FHRChain
Jonkman, M.,	records (EHR)	analyzed 65 existing	sample size.	cybersecurity, proposed	framework to
& Shanmugam,	adoption and	proposed EHR solutions,		EHRChain framework to	accelerate EHR
B. (2022).	cybersecurity risks by	and identified 14 major		address challenges	adoption and
	proposing a new	challenges including		simultaneously, enabled	enhance system
	framework called	privacy, security,		by dual-block chains	robustness against
	EHRChain.	confidentiality,		based on Hyperledger	cyberattacks,
		interoperability, and		Sawtooth and IPFS for	emphasizing the
		accessibility.		distributed data storage.	importance of
					addressing
					challenges such as
					privacy, security,
					and
					interoperability in
					EHR
					implementations.
Al Ani, M.,	To identify and	Conducted a systematic	Total of 724 studies	Identified studies	Suggested
Garas, G.,	evaluate electronic	review by searching	identified, filtered down	comparing EHR systems	challenges in
Hollingshead,	health record (EHR)	Embase and Ovid	to 40 studies based on	based on SQuaRE	assessing the most
J., Cheetham,	systems through a	MEDLINE databases	inclusion and exclusion	characteristics, with	advantageous EHR
D., Athanasiou,	systematic review	between 1974 and April	criteria, with seven	varying focus on	system when
T., & Patel, V.	comparing them	2021, including original	studies comparing more	functional suitability,	evaluated based
(2022).	based on System and	studies that appraised	than one EHR system.	performance efficiency,	on SQuaRE's 8
	Software Quality	EHR systems and their		compatibility, usability,	characteristics,
	Requirements and	providers.		reliability, security,	indicating the
	Evaluation (SQuaRE)			maintainability, and	need for further
	ISO/IEC 25010.			portability. Epic emerged	research to better
				as the most studied and	understand and
				implemented EHR system	compare EHR
				in the US and UK	systems.
Kalkhaich S	To identify the	Conducted a qualitative	Total of 6 overarts and 24	Indikets.	Emphasized the
Kaikiidjeii, S.	honofits and	study using qualitative	usors participated in the	18 challonges of adopting	emphasized the
G., Agridjari, A., Dindamal B	challenges of	souventional content	study selected through	SIB categorized into 12	strengthen the
Diffualfial, D.,	chaneliges of	conventional contell	study, selected through		su eliguien ule

Shahvali-	adopting the	analysis on 6 experts and	purposeful and snowball	sub-themes across 3	benefits of SIB and
Kuhshuri, Z., &	Integrated Electronic	24 users of SIB in six	sampling methods.	main themes: structure,	address its
Faraji-Khiavi, F.	Health System (SIB)	health centers of		process, and outcome.	challenges to
(2023).	in health centers of	Khuzestan province, Iran.		Benefits were mostly	enhance its
	Khuzestan Province,	Participants were		related to outcome	effectiveness in
	Iran.	selected using purposeful		theme, while challenges	solving health
		sampling for users and		were primarily associated	problems and
		snowball sampling for		with the structure	improve
		experts. Data collected		theme.	healthcare
		through semi-structured			delivery in Iran.
		interviews and analyzed			
		using thematic analysis.			
Sarwar, T.,	To explore the	Conducted a	Study was a survey and	Identified diverse data	Serves as a primer
Seifollahi, S.,	secondary use of	comprehensive overview	review article.	types and associated	for researchers to
Chan, J.,	Electronic Health	of information stored in		characteristics in EHRs	understand and
Zhang, X.,	Records (EHRs) for	EHR systems, data		that pose challenges to	utilize EHRs for
Aksakalli, V.,	data mining, focusing	transformations required		data mining and	data mining and
Hudson, I., &	on data	for analysis, data quality		analytics. Highlighted	analytics
Cavedon, L.	characteristics and	issues, and methods to		methods to address data	purposes,
(2022).	challenges.	address them. Reviewed		quality issues and	emphasizing the
		various data types used		discussed the usage of	importance of
		for different applications		different data types for	addressing data
		in EHR data mining and		various applications.	quality issues and
		analytics.			considering
					diverse data types
					in secondary EHR
					use.
Shahnaz, A.,	To explore the use of	Proposed a framework	The study was a	Highlighted the potential	Recommends the
Qamar, U., &	block chain	for implementing block	conceptual framework	benefits of implementing	adoption of block
Khalid, A.	technology for	chain technology in the	proposal and did not	block chain technology in	chain-based
(2019).	transforming	healthcare sector for EHR	involve empirical	EHR systems, including	solutions to
	Electronic Health	systems. Emphasized the	research.	enhanced security,	improve the
	Record (EHR)	importance of providing		privacy, and integrity of	scalability,
	systems and	secure storage of		electronic records.	security, and

addressing issues	electronic records	Discussed the scalability	integrity of EHR
related to data	through granular access	challenges faced by block	systems,
security, integrity,	rules for users.	chain technology and	emphasizing the
and management.		proposed off-chain	importance of
		storage solutions.	defining granular
			access rules and
			considering off-
			chain storage for
			addressing
			scalability issues.

The cited studies encompass a range of aims and methodologies regarding electronic health records (EHRs) and related challenges. Holmes et al. (2021) assembled a panel to address EHR challenges comprehensively, while Taksler et al. (2021) focused on adapting EHRs for research, emphasizing methodological considerations. Molebatsi (2020) examined the impact of electronic filing systems on patient management in public healthcare facilities, while Mahajan (2022) explored block chain-based solutions for secure EHR systems. Chenthara et al. (2019) reviewed security challenges in e-health solutions, and Pilares et al. (2022) proposed the EHRChain framework to address EHR adoption challenges. Al Ani et al. (2022) evaluated EHR systems, and Kalkhajeh et al. (2023) investigated the benefits and challenges of adopting the Integrated Electronic Health System (SIB) in Iran. Sarwar et al. (2022) surveyed data characteristics and challenges in secondary EHR use, while Shahnaz et al. (2019) proposed a block chain framework for EHRs. Each study offers insights and suggestions for enhancing EHR utilization, security, and effectiveness, catering to various aspects of healthcare data management and research.

Results

Table 3: Results indicating themes, Sub-themes, Trends, andexplanation.

Themes	Sub-themes	Trends	Supporting Studies	Explanation
EHR	Data Quality,	Increase	Holmes et	The challenges
Challenges	Usability	in EHR	al. (2021),	associated with EHRs,
		usage	Taksler et	particularly related to
			al. (2021)	data quality and
				usability, are evident in
				healthcare settings,
				despite an increasing
				trend in EHR usage.
Data	Data	Diverse	Sarwar et	Data mining in
Mining	Transformation,	Data	al. (2022),	healthcare relies on
	Quality	Types	Chenthara	effective data
			et al.	transformation and
			(2019)	high-quality data, with
				a trend towards
				utilizing diverse data
				types for analytics.
Blockchain	Security,	Adoption	Mahajan	Block chain technology
Integration	Privacy	of	(2022),	is increasingly adopted
		Blockchain	Shahnaz et	in healthcare to
			al. (2019)	address security and
				privacy concerns in EHR
				systems.
EHR	Privacy,	Slow	Pilares et	Despite the benefits,
Adoption	Interoperability	Adoption	al. (2022),	privacy concerns and
Challenges			Kalkhajeh	interoperability issues
			et al.	contribute to the slow
			(2023)	adoption of EHR
				systems in nealthcare
Curtain	las a second	Fuchamanad	Malahatai	organizations.
System	Improved	Ennanced		EHR systems offer
Benefits	Ffficioner	Care	(2020), Al	management officiant
	Еписенсу	Care	Ani et al.	and ophancing nationst
			(2022)	and enhancing patient
				care, supporting their

adoption in healthcare settings.

The results presented in Table 3 highlight several key themes and sub-themes regarding electronic health records (EHRs) in healthcare settings. Despite the challenges associated with data quality and usability, there is an increasing trend in EHR usage, as evidenced by studies conducted by Holmes et al. (2021) and Taksler et al. (2021). Data mining in healthcare relies on effective data transformation and high-quality data, with a trend towards utilizing diverse data types for analytics, supported by research from Sarwar et al. (2022) and Chenthara et al. (2019). Block chain technology is increasingly adopted to address security and privacy concerns in EHR systems, as indicated by studies conducted by Mahajan (2022) and Shahnaz et al. (2019). However, privacy concerns and interoperability issues contribute to the slow adoption of EHR systems in healthcare organizations, despite the benefits in improving management efficiency and enhancing patient care, as demonstrated by research from Pilares et al. (2022) and Kalkhajeh et al. (2023), as well as Molebatsi (2020) and Al Ani et al. (2022).

Discussion

The present study conducted a comprehensive analysis of the challenges and opportunities associated with electronic health records (EHRs) in healthcare settings, drawing on insights from a systematic review of existing literature. Holmes et al. (2021) and Taksler et al. (2021) emphasized the persistent challenges related to data quality and usability within EHR systems. Despite technological advancements and increased adoption rates, healthcare professionals still encounter issues with data accuracy, completeness, and accessibility. This finding underscores the importance of continuous improvement efforts in EHR design and implementation to ensure optimal usability and data integrity. Furthermore, the study identified a growing trend in the secondary use of EHRs for data mining and analytics, reflecting the increasing

recognition of EHRs as valuable sources of information for clinical and research purposes.

Another significant theme that emerged from the study was the integration of block chain technology into EHR systems. According to Mahajan (2022) and Shahnaz et al. (2019), block chain holds promise for addressing security and privacy concerns associated with EHRs by providing a decentralized and tamperproof platform for storing and sharing patient data. However, challenges remain in terms of scalability, interoperability, and regulatory compliance, highlighting the need for further research and development in this area. Additionally, the study identified barriers to EHR adoption, such as privacy concerns and interoperability issues, which continue to hinder the widespread implementation of EHR systems in healthcare organizations.

Moreover, Molebatsi (2020) and Al Ani et al. (2022) highlighted the benefits of EHRs in improving patient care and healthcare management. EHR systems offer numerous advantages, including enhanced accessibility to patient information, streamlined clinical workflows, and improved communication among healthcare providers. These benefits contribute to better decision-making, increased efficiency, and ultimately, improved patient outcomes. However, realizing the full potential of EHRs requires addressing the underlying challenges and ensuring the effective integration of EHR systems into existing healthcare infrastructure.

In conclusion, the findings of this study provide valuable insights into the complex landscape of EHR utilization, emphasizing the need for ongoing research and innovation to optimize the functionality, usability, and security of EHR systems in healthcare settings. The integration of block chain technology and the exploration of data mining opportunities highlight promising avenues for improving EHR systems' effectiveness and addressing existing challenges. However, addressing barriers to EHR adoption and maximizing the benefits of EHRs require collaborative efforts from policymakers, healthcare providers, and technology developers to overcome existing barriers and optimize EHR utilization in healthcare settings.

Limitation

One limitation of the present study is the reliance on existing literature, which may introduce biases or overlook emerging trends in EHR utilization. While systematic reviews provide a comprehensive overview of the current state of research, they are limited by the availability and quality of published studies. Additionally, the focus on selected studies may omit relevant insights from other sources, potentially limiting the breadth of analysis. Future research should consider incorporating primary data collection methods, such as surveys or interviews, to gather firsthand perspectives from healthcare professionals and EHR users.

Recommendation

Based on the findings of the study, several recommendations can be proposed to enhance EHR utilization and address existing challenges. Firstly, healthcare organizations should prioritize investments in EHR systems that prioritize usability, data quality, and security to optimize user experience and ensure data integrity. Additionally, policymakers should consider implementing standardized guidelines and regulations to promote interoperability and data exchange among different EHR platforms. Furthermore, continued research and development efforts are needed to explore emerging technologies, such as block chain and data mining, and their potential applications in improving EHR systems' functionality and effectiveness.

Conclusion

The present study provides valuable insights into the challenges and opportunities associated with electronic health records (EHRs) in healthcare settings. Despite the benefits afforded by EHR systems, including improved patient care and enhanced data accessibility, persistent challenges remain, such as data quality issues, interoperability barriers, and privacy concerns. By these challenges addressing and leveraging emerging technologies, such as block chain and data mining, healthcare organizations can optimize EHR utilization and realize the full potential of digital health records in improving healthcare delivery and patient outcomes. Continued collaboration between stakeholders, including policymakers, healthcare providers, and

technology developers, is essential to drive innovation and overcome existing barriers to EHR adoption and implementation.

References

- Al Ani, M., Garas, G., Hollingshead, J., Cheetham, D., Athanasiou, T., & Patel, V. (2022). Which electronic health record system should we use? A systematic review. Medical Principles and Practice, 31(4), 342-351.
- Al-Kaabi, R. A., & Abdullah, A. A. (2023). A survey: medical health record data security based on interplanetary file system and block chain technologies. Indonesian Journal of Electrical Engineering and Computer Science, 30(1), 586-597.
- Alruwaili, M. A., Ali, R. M., Shahbal, S., Alotaibi, S. G., Althiyabi, N. A., Aldosari, M. K., ... & Alharthi, F. M. (2023). Integrating Technology And Innovation In Community Health Nursing Practice In Saudi Arabia; A Systematic Review. Journal of Namibian Studies: History Politics Culture, 35, 2829-2852.
- Chenthara, S., Ahmed, K., Wang, H., & Whittaker, F. (2019). Security and privacy-preserving challenges of e-health solutions in cloud computing. IEEE access, 7, 74361-74382.
- Deepa, R., & Arya, M. S. (2022). Blockchain-Sidechain Based Data Storage for Reimaging Electronic Health Record via Optimized Interplanetary File System. In Information and Communication Technology for Competitive Strategies (ICTCS 2020) ICT: Applications and Social Interfaces (pp. 1097-1110). Springer Singapore.
- Dinesh, E., & Indrajith, C. R. (2023, March). Design and Development of an E-Healthcare Records Management System using Blockchain Algorithm. In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS) (pp. 722-726). IEEE.
- Girolami, I., Neri, S., Eccher, A., Brunelli, M., Hanna, M., Pantanowitz, L., ... & Mazzoleni, G. (2022). Frozen section telepathology service: Efficiency and benefits of an e-health policy in South Tyrol. Digital Health, 8, 20552076221116776.
- Holmes, J. H., Beinlich, J., Boland, M. R., Bowles, K. H., Chen, Y., Cook, T. S., ... & Moore, J. H. (2021). Why is the electronic health record so challenging for research and clinical care?. Methods of information in medicine, 60(01/02), 032-048.
- Kaihlanen, A. M., Virtanen, L., Buchert, U., Safarov, N., Valkonen, P., Hietapakka, L., ... & Heponiemi, T. (2022). Towards digital health equity-a qualitative study of the challenges experienced by vulnerable groups in using digital health services in the COVID-19 era. BMC health services research, 22(1), 188.

- Kalkhajeh, S. G., Aghajari, A., Dindamal, B., Shahvali-Kuhshuri, Z., & Faraji-Khiavi, F. (2023). The Integrated Electronic Health System in Iranian health centers: benefits and challenges. BMC Primary Care, 24(1), 53.
- Mahajan, H. B. (2022). Emergence of healthcare 4.0 and block chain into secure cloud-based electronic health records systems: solutions, challenges, and future roadmap. Wireless Personal Communications, 126(3), 2425-2446.
- Marwaha, J. S., Landman, A. B., Brat, G. A., Dunn, T., & Gordon, W. J. (2022). Deploying digital health tools within large, complex health systems: key considerations for adoption and implementation. NPJ digital medicine, 5(1), 13.
- Mishra, P., Khandelwal, B., & Dewangan, B. K. (2023). Analysis of Blockchain Security Applications in Electronic Health Records Standardization. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 16(5), 19-30.
- Molebatsi, D. G. (2020). The utilisation of an electronic filing system to optimise patient management in a selected public healthcare facility (Doctoral dissertation, Cape Peninsula University of Technology).
- Murala, D. K., Panda, S. K., & Sahoo, S. K. (2023). Securing electronic health record system in cloud environment using block chain technology. In Recent advances in block chain technology: realworld applications (pp. 89-116). Cham: Springer International Publishing.
- Nakajjubi, F., Ashemeza, J., Aguti, S., & Balimulaba, J. (2022). Designing an electronic filing system for managing patients' records at Kira Health Center III Art Clinic (Doctoral dissertation, Makerere University).
- Nautiyal, N., Agarwal, P., & Sharma, S. (2023, February). Rechain: A Secured Blockchain-Based Digital Medical Health Record Management System. In 2023 4th International Conference on Innovative Trends In Information Technology (ICITIIT) (pp. 1-6). IEEE.
- Parameshwari, V., Kumar, P. S., Marla, A. P., & Rai, S. (2022). Comparison between Retrieval Time of Manual and Electronic Medical Records–A Case Study. International Journal of Case Studies in Business, IT and Education (IJCSBE), 6(2), 1-14.
- Perugu, S. (2022). A novel model for data storage using LZW compression technique for Cloud based Electronic Healthcare Systems (Doctoral dissertation, Dublin, National College of Ireland).

- Pilares, I. C. A., Azam, S., Akbulut, S., Jonkman, M., & Shanmugam, B. (2022). Addressing the challenges of electronic health records using block chain and ipfs. Sensors, 22(11), 4032.
- Puneeth, R. P., & Parthasarathy, G. (2023). A Survey on Security and Interoperability of Electronic Health Records Sharing Using Blockchain Technology. Acta Informatica Pragensia, 12(1), 160-178.
- Rui, Z., Yanfei, L., Xuemei, S., & Songwang, W. (2023). Blockchain and interplanetary file system-based solution for storing and sharing electronic health records. 疾病监测, 38(11), 1-4.
- Sarwar, T., Seifollahi, S., Chan, J., Zhang, X., Aksakalli, V., Hudson, I., ... & Cavedon, L. (2022). The secondary use of electronic health records for data mining: Data characteristics and challenges. ACM Computing Surveys (CSUR), 55(2), 1-40.
- Shahnaz, A., Qamar, U., & Khalid, A. (2019). Using block chain for electronic health records. IEEE access, 7, 147782-147795.
- Shaikh, M., Vayani, A. H., Akram, S., & Qamar, N. (2022). Open-source electronic health record systems: A systematic review of most recent advances. Health Informatics Journal, 28(2), 14604582221099828.
- Taksler, G. B., Dalton, J. E., Perzynski, A. T., Rothberg, M. B., Milinovich, A., Krieger, N. I., ... & Einstadter, D. (2021). Opportunities, pitfalls, and alternatives in adapting electronic health records for health services research. Medical Decision Making, 41(2), 133-142.
- Verdonck, M., & Poels, G. (2020). Decentralized data access with IPFS and smart contract permission management for electronic health records. In Business Process Management Workshops: BPM 2020 International Workshops, Seville, Spain, September 13–18, 2020, Revised Selected Papers 18 (pp. 5-16). Springer International Publishing.
- Zheng, K., Ratwani, R. M., & Adler-Milstein, J. (2020). Studying workflow and workarounds in electronic health record–supported work to improve health system performance. Annals of internal medicine, 172(11 Supplement), S116-S122.