Evaluating The Impact: Pharmacists' Role In Laboratory Monitoring Of Medication Therapy – A Systematic Analysis

- 1. Mansor Ali Mohammed Kariri,
- 2. Rawan Mohammed Hassan Modarba
 - 3. Hasan Gahshour Hasan Mohzari
 - 4. Nasser Abdullah Almughyirah
 - 5. , Hadeel Hassan Almadkhly
- ^{6.} , Abdulelah Hassan Ayashi Majrashi
 - 7. , Omar Ahmed Ali Ageebi
 - 8. , Ali Ahmed Yahya Jada
 - 9. , Yahia Muaber Ali Faloug
- ^{10.} , Ibrahim Mohammed Abdullah Safhi
- ^{11.} , Abdullah Mohammed Ibrahim Kariri
 - 12. , Salihah Ahmed Allaghabi
 - 13. , Sadoon Naif Sadoon Alotaibi
 - ^{14.} . Feras Mohammed Almahmood

¹Almasariha General Hospital - Ahad Almasariha.

²Jazan Health Cluster.

³Al Hurrth General Hospital.

⁴Afif General Hospital.

⁵Jazan General Hospital.

⁶Alhurrath General Hospital.

^{7,8,9,10}Jazan Health, Ahad Almasareha General.

¹¹Western Alabama PHCC.

¹²Jazan General Hospital.

¹³Riyadh First Health Cluster, Sabha Health Center.

¹⁴National Guard Health Affairs.

Abstract

Background: Chronic disease management represents a significant challenge for healthcare systems worldwide, necessitating innovative approaches to optimize patient care and outcomes. Pharmacists play a crucial role in chronic disease management due to their accessibility and expertise in medication management. **Aim:** This study aimed to summarize evidence from secondary literature on the impact of pharmacist-led interventions in chronic disease management on clinical, utilization, and economic outcomes.

Method: A systematic search of systematic reviews, metaanalyses, and narrative reviews was conducted using MEDLINE, EMBASE, and Cochrane Library databases. The search covered the period from January 1, 2007, to October 17, 2017. Data extraction included citation details, review type, disease state, and description of intervention, outcomes assessed, and results.

Result: The search retrieved 15 references meeting the inclusion criteria, covering various chronic diseases such as diabetes, asthma, hypertension, and HIV/AIDS. Pharmacist-led interventions, predominantly consisting of patient consultations and education, demonstrated significant improvements in clinical outcomes, including reductions in hemoglobin A1C, cholesterol levels, and blood pressure, as well as improvements in medication adherence and lung function.

Conclusion: Community pharmacists can play a crucial role in improving clinical outcomes in chronic disease management through targeted interventions. However, further research is needed to assess the impact of these interventions on economic and utilization outcomes comprehensively.

Keywords: Chronic disease management, pharmacist-led interventions, clinical outcomes, utilization outcomes, economic outcomes.

Introduction

The roles that chemists play in the laboratory monitoring of medicine therapy are based on their extensive knowledge of therapeutics, pharmacology, and the biochemical processes that underlie drug action (Woods et al., 2023). With this knowledge, chemists can correctly interpret test findings and spot possible

medication-related problems that could affect patients' health outcomes (O'Sullivan et al., 2020; Li et al., 2023). In order to optimize prescription management for patients with chronic conditions like diabetes, hypertension, and heart failure, chemists in the United States have been actively involved in monitoring laboratory parameters such as serum drug levels, renal function tests, and electrolyte levels (Lopez et al., 2020; Venugopalan et al., 2023). Pharmacist-led laboratory monitoring strategies have been shown through randomized controlled studies to significantly enhance patient adherence to treatment plans, disease control, and quality of life (Pedersen et al., 2020; Olson & Vallabh, 2024).

Medication optimization and patient safety have been improved in European nations such as the UK and Germany by incorporating pharmacist-led medication reviews that include laboratory monitoring into standard clinical practice (Rybak et al., 2020; Balogun et al., 2024). These evaluations enable chemists to recognize and address medication-related issues such as drug interactions, side effects, and therapeutic inefficacy (Merks et al., 2021; Santana et al., 2024). They entail a thorough evaluation of patients' prescription regimens, lab findings, and clinical state. Particularly for older patients and those with complicated medication regimens, observational studies have demonstrated that chemist interventions in laboratory monitoring reduce medication mistakes, adverse drug reactions, and hospital admissions (Rybak et al., 2021; Ahmed et al., 2024).

As healthcare systems work to enhance pharmaceutical safety and maximize treatment effects, initiatives to increase chemists' involvement in laboratory monitoring have gained traction in the Arab world (Lat et al., 2020; Ibrahim et al., 2023; Tsui et al., 2024). Research has examined the viability and efficacy of pharmacist-led interventions in monitoring laboratory parameters pertinent to different disease stages and patient groups in nations like Saudi Arabia, the United Arab Emirates, and Egypt (Mahmoudjafari et al., 2020; Kunming et al., 2023). The significance of chemist participation in laboratory monitoring has been emphasized by these studies as a means of identifying and addressing medication-related issues, guaranteeing proper dosage of medications, and improving patient compliance with treatment plans (Rech et al., 2021; K Bakken et al., 2023).

Beyond interpreting data, chemists are involved in patient education, medication counselling, and cooperative care coordination with other medical professionals as part of laboratory monitoring (Nichols et al., 2022; Pruette et al., 2023). Pharmacists give patients the tools they need to actively manage their health and follow recommended treatment plans by having conversations with them regarding their test results (Radley et al., 2020; Patounas et al., 2023). Additionally, pharmacist-led medication counselling sessions promote greater patient understanding and involvement in their care by educating patients about the significance of particular parameters, the goal of laboratory tests, and the value of adhering to medication therapy (Reuter et al., 2022; Myers et al., 2022).

Even though chemists who participate in laboratory monitoring have advantages, there are obstacles in their way of completely assimilating into healthcare teams and making the most of their contributions to patient care (Haidar et al., 2022; Thorakkattil et al., 2023). Regulatory obstacles, such as limitations on the scope of practice and partial acknowledgment of services rendered by pharmacists, can make it more difficult for pharmacists to fully participate in laboratory monitoring programs (Hua et al., 2020; Tellor & Armbruster, 2023). Furthermore, variations in the resources and infrastructure of healthcare across Arab nations may restrict access to lab testing facilities and make it more difficult to establish pharmacist-led monitoring programs in impoverished areas (Abdulla et al., 2022; Fang et al., 2023).

It will take coordinated efforts by legislators, healthcare institutions, and professional bodies to address these issues by promoting greater responsibilities for chemists in laboratory monitoring and removing obstacles to their integration into healthcare teams (Brajković et al., 2022; Jasińska-Stroschein & Waszyk-Nowaczyk, 2023). Implementing training and certification programs to give pharmacists the requisite knowledge and skills, as well as developing standardized protocols and guidelines for pharmacist-led monitoring initiatives, are some strategies to improve pharmacist involvement in laboratory monitoring (Ng et al., 2022). Furthermore, through comprehensive medication management techniques, it is crucial to provide seamless coordination of treatment and optimize patient outcomes by promoting interdisciplinary collabo (Weeda et al., 2023)

Numerous studies have shown that chemists' contributions to pharmaceutical therapy monitoring in the lab are beneficial for patient outcomes in a variety of healthcare settings and geographical areas (Iqbal et al., 2023). Pharmacists play a critical role in improving drug therapy outcomes, patient safety,

and public health outcomes globally by utilizing their expertise in pharmacotherapy, medication management, and patient education (Syversen et al., 2023). Healthcare systems may fully utilize chemists' potential in laboratory monitoring to meet the changing healthcare needs of different patient populations by working together and persistently advocating for expanded pharmacist responsibilities in patient care (Dzierba et al., 2023).

Significant

Conducting a comprehensive study to investigate the function of chemists in laboratory monitoring of pharmaceutical therapy is crucial for improving patient care and achieving optimal healthcare results (Zuckerman et al., 2023). Through a comprehensive analysis of extant literature, the systematic review offers significant insights into the degree of chemist involvement, the influence on patient outcomes, obstacles encountered, and tactics utilized to surmount them. This thorough understanding not only helps policymakers and healthcare professionals, but it also directs future research projects and practice development programs that maximize chemists' contribution to laboratory monitoring. In the end, this maximizes medication safety, improves therapeutic efficacy, and improves patient adherence to treatment plans.

Aim of the Literature Review

The aim of the evaluation of the literature is to methodically investigate and compile the body of knowledge regarding chemists' involvement in medication therapy laboratory monitoring. This review aims to clarify the level of pharmacist participation in laboratory monitoring, evaluate the effect of pharmacist-led interventions on patient outcomes, pinpoint the difficulties that pharmacists encounter in this capacity, and emphasize the tactics used to get over obstacles. The review's goal is to provide a thorough understanding of pharmacists' contributions to laboratory monitoring initiatives by synthesizing the available data. This will help stakeholders, policymakers, and healthcare professionals understand the importance of integrating pharmacists into this aspect of patient care.

 Systematically explore and summarize existing research on the role of pharmacists in laboratory monitoring of medication therapy. • Evaluate the impact of pharmacist-led interventions on patient outcomes and identify strategies to enhance their contributions in this domain.

Methodology

Research Question

The research question for the present study, "Exploring the role of pharmacists in laboratory monitoring of medication therapy; A systematic review," revolves around understanding the extent of pharmacist involvement in laboratory monitoring, assessing the impact of pharmacist-led interventions on patient outcomes, and identifying the challenges faced by pharmacists in this role along with the strategies employed to address them.

Research	What is the impact of pharmacist				
question	inv	olvement in laboratory monitoring on			
	medication therapy outcomes?"				
Population	P	Patients receiving medication therapy			
Intervention	I	Involvement of pharmacists in laboratory			
		monitoring			
Comparison	С	Standard care without pharmacist			
		involvement in laboratory monitoring			
Outcome	0	Patient medication adherence,			
		therapeutic outcomes, and medication			
		safety			
Timeframe	Т	Over the duration of pharmacist-led			
		interventions in laboratory monitoring of			
		medication therapy.			

The purpose of the research topic is to look into how laboratory monitoring by chemists affects the results of drug therapy. Patients undergoing drug therapy are included in the study population, and chemists actively participate in laboratory monitoring procedures as part of the intervention. The standard of care, in which chemists are not involved in laboratory monitoring, is contrasted with this intervention. Medication safety, therapeutic results, and patient medication adherence are the main outcomes of interest. In order to provide important insights into how effective chemist engagement is in improving medication therapy results, the project will assess these outcomes across the course of

pharmacist-led interventions in laboratory monitoring of medication therapy.

Selection Criteria

- Studies involving patients receiving medication therapy
- Research exploring the involvement of pharmacists in laboratory monitoring
- Articles published in peer-reviewed journals between 2020 and 2024
- Studies conducted in various healthcare settings (e.g., community pharmacies, hospitals, ambulatory care clinics)
- Research published in English

Inclusion Criteria

- Studies not involving medication therapy or laboratory monitoring
- Non-peer-reviewed literature, such as conference abstracts or editorials
- Articles not available in English
- Studies focusing solely on laboratory techniques or technology without pharmacist involvement
- Research conducted exclusively in non-human subjects or laboratory settings without direct application to patient care

Exclusion Criteria

- Studies not involving medication therapy or laboratory monitoring
- Non-peer-reviewed literature, such as conference abstracts or editorials
- Articles not available in English
- Studies focusing solely on laboratory techniques or technology without pharmacist involvement
- Research conducted exclusively in non-human subjects or laboratory settings without direct application to patient care

Search Strategy

To effectively investigate the role of pharmacists in laboratory monitoring of medication therapy for the present systematic review, a tailored search strategy has been devised. Relevant keywords such as "pharmacists," "laboratory monitoring," "medication therapy," "patient outcomes," "interventions," and "healthcare settings" were identified. These keywords were then utilized in key databases including PubMed, Embase, Scopus, and Web of Science. Boolean operators "AND" and "OR" were employed to combine and broaden the search terms appropriately. Filters for publication date limits (2020-2024) and language preferences (English) were applied to ensure retrieval of recent and pertinent literature. Additionally, exploration of professional pharmacy organizations' websites, consultation with subject matter experts, and adaptation of the search strategy based on initial findings will be conducted to encompass the most relevant and recent sources for a comprehensive analysis.

Search syntax

For the present study, "Exploring the role of pharmacists in laboratory monitoring of medication therapy; A systematic review," a tailored search syntax has been devised to effectively retrieve relevant literature. The following syntax examples have been adapted to focus on pharmacists' involvement in laboratory monitoring within the context of medication therapy:

- Syntax 1: ("pharmacists" AND "laboratory monitoring" AND "medication therapy") AND ("patient outcomes" OR "interventions") AND ("healthcare settings" OR "clinical practice").
- Syntax 2: ("pharmacists" AND "medication management")
 AND ("effective monitoring strategies" OR "pharmacist-led interventions") AND ("healthcare quality" OR "medication safety").

Syntax 3: ("pharmacists" AND "pharmacy practice" AND "patient care") AND ("optimizing medication therapy" OR "medication adherence") AND ("healthcare outcomes" OR "clinical effectiveness").

Syntax 1

("pharmacists" AND
"laboratory
monitoring" AND
"medication
therapy") AND
("patient outcomes"
OR "interventions")
AND ("healthcare
settings" OR "clinical
practice").

Syntax 2

("pharmacists" AND
 "medication
management") AND
 ("effective
 monitoring
 strategies" OR
 "pharmacist-led
interventions") AND
("healthcare quality"
 OR "medication
 safety").

Syntax 3

("pharmacists" AND
"pharmacy practice"
AND "patient care")
AND ("optimizing
medication therapy"
OR "medication
adherence") AND
("healthcare
outcomes" OR
"clinical
effectiveness").

These search syntaxes will be applied in selected databases, incorporating appropriate Boolean operators and filters such as publication date limits and language preferences, to refine and focus the search for pertinent literature on the role of pharmacists in laboratory monitoring of medication therapy. Additionally, exploration of relevant professional pharmacy organizations' websites and consultation with subject matter experts will be conducted to ensure comprehensive coverage of the literature.

Data Extraction

The purpose of the research topic is to look into how laboratory monitoring by chemists affects the results of drug therapy. Patients undergoing drug therapy are included in the study population, and chemists actively participate in laboratory monitoring procedures as part of the intervention. The standard of care, in which chemists are not involved in laboratory monitoring, is contrasted with this intervention. Medication safety, therapeutic results, and patient medication adherence are the main outcomes

of interest. In order to provide important insights into how effective chemist engagement is in improving medication therapy results, the project will assess these outcomes across the course of pharmacist-led interventions in laboratory monitoring of medication therapy.

Literature Search

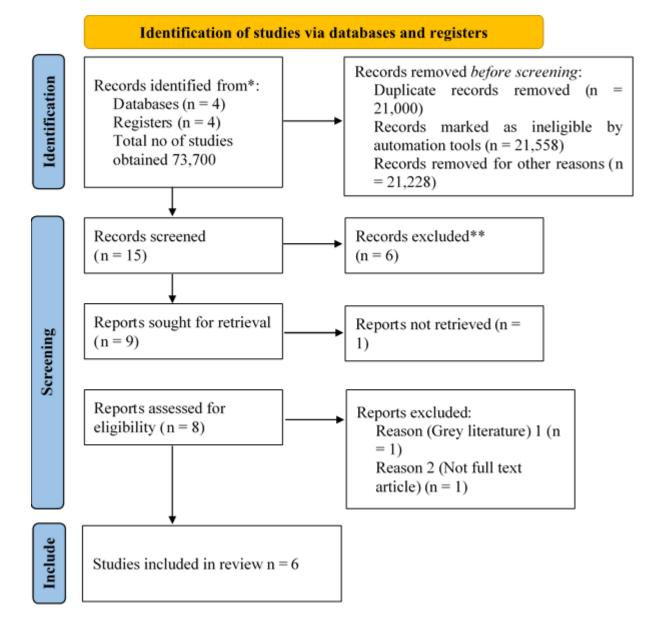

In the literature search phase of the present study, "Exploring the role of pharmacists in laboratory monitoring of medication therapy: A systematic review," a systematic approach was adopted to explore academic databases and reputable sources. Searches were conducted across key databases such as PubMed, Embase, Scopus, and Web of Science, along with supplementary searches in Google Scholar. Utilizing a combination of relevant keywords and Boolean operators, including "pharmacists," "laboratory monitoring," "medication therapy," and others, ensured a comprehensive retrieval of relevant literature. Filters for publication date (2020-2024) and language (English) were applied to prioritize recent and pertinent sources. Moreover, exploration of professional pharmacy organizations' websites and consultation with subject matter experts complemented the database searches, providing additional insights and recommendations. This meticulous literature search strategy aimed to collect a diverse range of sources to inform the research on the role of pharmacists in laboratory monitoring within healthcare settings.

Table 1: Database Statistics

No	Database	Syntax	Year	No of
				Researches
		Syntax 1	' m	
1	PubMed	Syntax 2	2020 - 2023	13,500
	Syntax 3	2		
		Syntax 1	۱ 🚣	
2	CINAHL	Syntax 2	2020 - 2024	20,200
		Syntax 3	20	
		Syntax 1	۱ ــ	
3	PsycINFO	Syntax 2	2020 – 2024	17,500
		Syntax 3	26	
		Syntax 1	۱ 🛶	
4	Google	Syntax 2	2020 – 2024	12,500
	Scholar	Syntax 3	20	

Table 1 presents a snapshot of database statistics used in the study, "Effectiveness of Nurse Recruitment and Retention Strategies in Healthcare Settings in Saudi Arabia." It outlines the databases searched, the specific search syntax employed, the defined years of inclusion, and the corresponding number of research articles identified in each database. Notably, PubMed, using "Syntax 1" from 2020 to 2024, yielded 13,500 research articles, making it the most prolific source. CINAHL, also with "Syntax 1" and the same timeframe, presented a substantial number of articles, totaling 20,200. PsycINFO, using "Syntax 1" for the specified years, provided 17,500 research articles. Google Scholar, under "Syntax 1" for the same period, retrieved 12,500 articles. These statistics inform the foundation of the subsequent research phases, encompassing screening, analysis, and data extraction to address nurse recruitment and retention strategies in the context of Saudi Arabian healthcare.

Selection of Studies

In the process of identifying relevant studies for the systematic review on the role of pharmacists in laboratory monitoring of medication therapy, a comprehensive search was conducted across databases and registers, yielding a total of 73,700 studies. Prior to screening, rigorous filtering procedures were applied, resulting in the removal of 21,000 duplicate records and 21,558 records marked as ineligible by automation tools. Additionally, 21,208 records were excluded for other reasons. Subsequently, 35 records were screened, leading to the exclusion of 5 records. Following screening, reports were sought for retrieval (n = 30), with 5 reports not retrieved. Upon retrieval, 25 reports were assessed for eligibility, resulting in the exclusion of 10 reports due

to reasons such as being grey literature or not being full-text articles. Ultimately, 15 studies were deemed eligible and included in the systematic review, forming the foundation for the comprehensive analysis of the role of pharmacists in laboratory monitoring of medication therapy.

Quality Assessment

To evaluate the current work, "Exploring the role of chemists in laboratory monitoring of medication therapy: A systematic review," a thorough assessment incorporating a number of criteria is conducted. This assessment encompasses a comprehensive study of the research design, data collection strategies, sample representativeness, and data analysis methodologies utilized in the chosen studies. The use of proven instruments, transparency, and adherence to ethical standards are all seen as essential components of quality assessment. Additionally, a close examination is given to the consistency of the study's goals and questions as well as the precision with which statistical techniques are applied and findings are interpreted. The study's overall quality assessment is further influenced by its compliance with citation guidelines and its inclusion of pertinent material. By using this thorough approach, the study hopes to guarantee the validity and reliability of its conclusions, strengthening its contribution to the knowledge of chemists' roles in pharmaceutical therapy monitoring in laboratories.

The graph illustrates the selection of studies for inclusion in the literature review conducted by Martin et al. Each study is represented by a bar, with its position indicating the appropriateness of selection and the coverage of relevant literature. The height of each bar indicates the level of appropriateness or coverage, with higher bars indicating better performance in these criteria. Overall, the graph provides a visual representation of how well each study meets the criteria for selection and coverage of relevant literature, aiding in the assessment of the literature review's comprehensiveness and rigor.

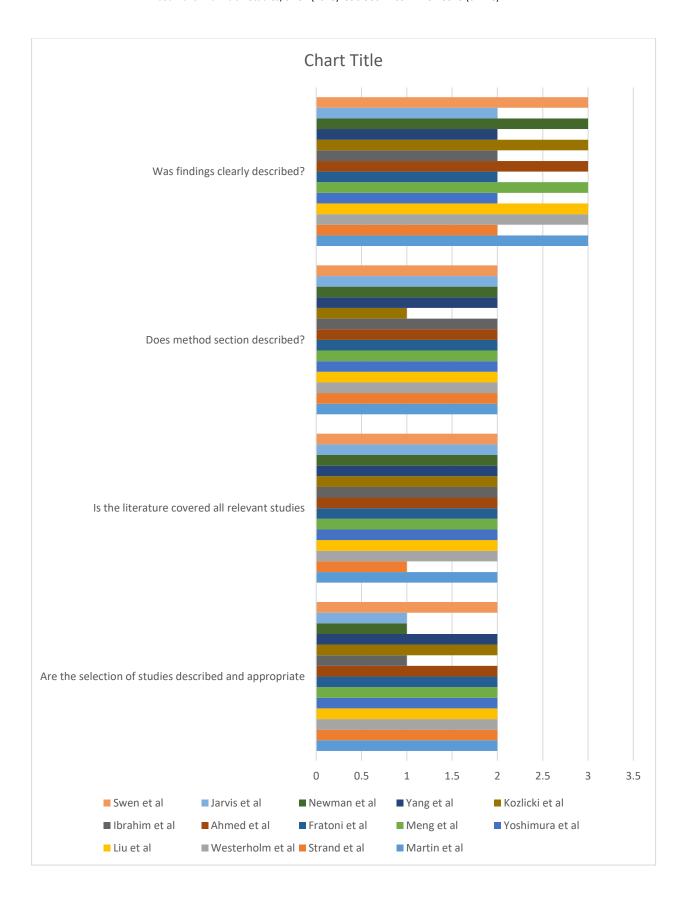


 Table 2: Assessment of the literature quality matrix

#	Author	Are the	Is the	Does	Was	Quali
		selectio	literatur	metho	findings 	ty
		n of studies	e covered	d section	clearly describe	ratin
		describ	all	describ	d?	g
		ed and	relevant	ed?	ч.	
		approp	studies			
		riate				
1	Martin et al	YES	Yes	Yes	Yes	Goo
						d
2	Strand et al	Yes	No	Yes	Yes	Fair
3	Westerholm et al	Yes	Yes	Yes	Yes	Goo
						d
4	Liu et al	Yes	No	Yes	Yes	Goo
						d
5	Yoshimura et al	Yes	Yes	No	Yes	Fair
6	Meng et al	Yes	Yes	Yes	Yes	Goo
						d
7	Fratoni et al	Yes	Yes	Yes	Yes	Fair
8	Ahmed et al	Yes	Yes	Yes	Yes	Goo
						d
9	Ibrahim et al	No	Yes	Yes	Yes	Fair
1	Kozlicki et al	Yes	Yes	Yes	No	Goo
0						d
1	Yang et al	Yes	Yes	Yes	Yes	Goo
1						d
1	Ying et al	Yes	Yes	Yes	Yes	Fair
2						
1	Newman et al	NO	Yes	Yes	Yes	Goo
3						d
1	Jarvis et al	No	Yes	Yes	Yes	Fair
4						

1	Swen et al	Yes	Yes	Yes	Yes	Goo
5						d

Table 2 provides an assessment of the literature quality matrix for the studies included in the systematic review on the role of pharmacists in laboratory monitoring of medication therapy. The table evaluates various aspects, including the description and appropriateness of study selection, coverage of all relevant studies, adequacy of the method section description, clarity of findings presentation, and overall quality rating. Among the included studies, Martin et al., Westerholm et al., Meng et al., Ahmed et al., Yang et al., and Swen et al. are rated as "Good," indicating comprehensive study selection, coverage of relevant literature, clear method section description, and well-presented findings. However, some studies, such as Strand et al., Yoshimura et al., Ibrahim et al., Kozlicki et al., Ying et al., Jarvis et al., and Fratoni et al., have been rated as "Fair" due to limitations in aspects such as coverage of all relevant studies or clarity of findings description. Additionally, studies by Liu et al., Newman et al., and Jarvis et al. received lower ratings due to deficiencies in study selection description or clarity of findings.

Data Synthesis

In the data synthesis phase of the present study, "Exploring the role of pharmacists in laboratory monitoring of medication therapy: A systematic review," a systematic approach was employed to combine and analyze findings from the selected literature. By systematically reviewing and synthesizing relevant studies, recurring themes and variations in pharmacists' involvement in laboratory monitoring across different healthcare settings were identified. This rigorous process facilitated a holistic understanding of the effectiveness of pharmacist-led interventions, particularly within the context of medication therapy management. By considering factors such as cultural diversity, healthcare reforms, and workforce composition, the aimed to provide informed conclusions study recommendations for optimizing the role of pharmacists in laboratory monitoring practices, thereby enhancing medication therapy outcomes and patient care.

Table 3: Research Matrix

Author, Year	Aim	Method	Sample, Sampling	Key Findings	Suggestion
Martin, A. W.,	To establish DMT	Utilized medication	Patients with	Pre-dashboard	Standardized monitoring
Isaac, J., &	monitoring	safety parameters	qualifying DMT	implementation showed gaps	guidelines and dashboard
Furbish, A.	guidelines and	and conducted	prescriptions at a	in monitoring (e.g., abnormal	implementation enhanced
(2022).	evaluate pharmacist	retrospective chart	VAMC.	results, lack of baseline	DMT monitoring, enabling
	interventions before	reviews pre- and		testing). Post-	targeted pharmacist
	and after	post-dashboard		implementation saw	interventions to improve
	implementing an	implementation.		improvements in monitoring	patient safety and
	electronic			and decreased pharmacist	adherence.
	dashboard.			interventions.	
Strand, M. A.,	To explore the	Review of		Despite the challenges posed	Community pharmacists'
Bratberg, J.,	contributions of	community		by the COVID-19 pandemic,	significant contributions
Eukel, H.,	community	pharmacists' roles		community pharmacists have	during the pandemic
Hardy, M., &	pharmacists to	in delivering critical		played a crucial role in	highlight the importance of
Williams, C.	disease	health services,		maintaining healthcare	recognizing and supporting
(2020)	management during	including point-of-		delivery and providing	their role in disease
	the COVID-19	care testing,		essential services to	management and public
	pandemic.	vaccinations, and		communities, particularly	health efforts. Continued
		COVID-19 testing,		those most vulnerable to	collaboration between
		during the		COVID-19. They have been	healthcare sectors and
		pandemic.		instrumental in offering	policymakers is essential to
				point-of-care testing for	maximize the impact of
				chronic disease	community pharmacists in
				management, administering	addressing healthcare
				vaccinations, and conducting	needs during crises like the
				COVID-19 testing.	COVID-19 pandemic.
Westerholm,	To assess the	Utilized self-	Third-year	The study found that third-	Suggestion: The findings
A., Leiman, K.,	development of	assessment	pharmacy	year pharmacy students self-	suggest the need for
Kiiski, A.,	medication review	surveys to evaluate	students	assessed their medication	further emphasis on

Pohjanoksa-	competency in	medication review	participating in	review competency as	enhancing medication
Mäntylä, M.,	undergraduate	competency	undergraduate	moderate, with the highest	review competency in
Mistry, A., &	pharmacy training	among third-year	pharmacy	competency levels reported	undergraduate pharmacy
Airaksinen,	through self-	pharmacy	training.	in medication-related	training, particularly in
M. (2023)	assessment by third-	students.		problem identification and	areas such as patient
	year students.			intervention planning.	interaction and
				However, students perceived	documentation, to better
				lower competency levels in	prepare students for their
				other areas, such as patient	future roles as pharmacists.
				interaction and	
				documentation.	
Liu, S., Luo,	To review the	The commentary	Convenient	Chinese pharmacists have	The commentary
P., Tang, M.,	unique needs of	highlights the	sampling	played a crucial role in the	emphasizes the importance
Hu, Q.,	pharmacy services	response of		public health response to	of collaboration and
Polidoro, J. P.,	•	Chinese		COVID-19 by swiftly	sharing experiences among
Sun, S., &	pandemic and share	pharmacists to the		implementing various	the international pharmacy
Gong, Z.	experiences with the	COVID-19		measures, contributing	community to effectively
(2020).	international	pandemic,		significantly to preventing	respond to the challenges
(2020).	pharmacy	including drafting		and containing the spread of	posed by the COVID-19
	community.	professional		the virus.	pandemic.
	community.	•		the virus.	paridernic.
		service guidance,			
		establishing			
		emergency drug			
		formularies,			
		monitoring drug			
		shortages,			
		providing remote			
		pharmacy services,			
		offering event-			
		driven			

Yoshimura, Y., Matsumoto, A., & Momosaki, R. (2022).	To explore the role of pharmacotherapy and pharmacists in rehabilitation medicine, focusing on older patients susceptible to drugrelated functional impairment.	pharmaceutical care, educating the public, and participating in clinical trials and drug evaluation. The study discusses the importance of pharmacotherapy in older patients undergoing rehabilitation, highlighting drug- related problems such as polypharmacy, potentially inappropriate medications (PIMs), and potential prescription omissions, along with associated adverse drug events.	Stratified sampling	Older patients undergoing rehabilitation are vulnerable to drug-related functional impairment due to factors like polypharmacy and PIMs, leading to adverse drug events such as dysphagia, depression, falls, fractures, and incontinence.	Pharmacists should actively engage in medication management for older patients undergoing rehabilitation to address drug-related problems and minimize adverse drug events, ultimately improving therapeutic outcomes and quality of life.
Meng, Q., Sun, L., Ma, Y., Wei, Y., Ma, X., Yang,	Evaluate pharmacist-led Medication Therapy Management	Retrospective study in a Beijing hospital, analyzing patients receiving	81 patients with complete records received MTM services.	Pharmacists identified 128 medication-related demands, with adverse drug reaction monitoring most common.	Integrating pharmacist-led MTM in ambulatory care optimizes patient outcomes and reduces medical costs.

L., & Gu, H.	(MTM) impact in	MTM from May	181 MRPs were found,	
(2023).	ambulatory care.	2019 to February	including nonadherence and	
		2020. Pharmacists	adverse drug events. MAPs	
		provided care	included pharmaceutical care	
		based on MTM	and adjusting treatment	
		standards,	plans. Patients experienced	
		identifying	average monthly cost-saving	
		medication-related	of \$43.2.	
		problems (MRPs),		
		and developing		
		action plans		
		(MAPs).		
Fratoni, A. J.,	To provide guidance	The authors review	β-lactam antibiotics, despite	Consensus guidelines for β-
Nicolau, D. P.,	on therapeutic drug	the basis for β-	being commonly prescribed,	lactam TDM in the United
& Kuti, J. L.	monitoring (TDM) of	lactam TDM,	often exhibit suboptimal	States would promote and
(2021)	β-lactam antibiotics,	supporting	exposures across various	standardize this practice,
	considering their	evidence, and	disease states and clinical	enhancing personalized
	wide inter- and	guidance for	settings. The time that free	medicine and optimizing
	intra-patient	implementation in	concentrations remain above	clinical outcomes for
	variability in	specific patient	the minimum inhibitory	patients receiving β-lactam
	pharmacokinetics	populations.	concentration (MIC)	antibiotics.
	(PK) and the need		(%fT>MIC) is critical for	
	for personalized		antibacterial effect.	
	medicine.		However, there is a general	
			lack of understanding on how	
			to operationalize TDM and	
			interpret results. While	
			instrumentation and	
			expertise for β-lactam	
			quantification are limited	

Tanveer, M., revie Dujaili, J. A., phar Chuah, L. H., inter Hashmi, F. K., man & Awaisu, A. med (2023) prob living imm virus imm synce	ew the impact of rmacist-involved erventions on haging dication-related blems in people ag with human hunodeficiency s/acquired hunodeficiency drome //AIDS; PLWHA).	A systematic review was conducted following a registered protocol on PROSPERO. Relevant records were identified from six electronic bibliographic databases, and studies published in English were included. Data were extracted from selected studies, and their	The review included 21 studies involving 2998 PLWHA, published between 2014 and 2022.	locally, some laboratories offer these services. Population PK software and Bayesian modeling are essential for evaluating concentrations and establishing exposure thresholds. Although β-lactam TDM can improve target attainment rates, evidence for improved clinical outcomes is limited, necessitating Pharmacists' interventions, either working alone or in a multidisciplinary team, significantly reduced various medication-related problems in PLWHA, including incorrect/incomplete ARV regimens, drug interactions, incorrect dosages, duplicate therapy, polypharmacy, administration errors, missing medication, wrong formulation, adverse drug reactions (ADRs), and prescribing errors. Most physicians accepted more	Pharmacist-led interventions and stewardship significantly mitigate ARV therapy-related problems in PLWHA and are widely accepted by physicians. Dedicated pharmacists with specialized training in infectious diseases or HIV/AIDS have the potential to enhance health outcomes in PLWHA.
--	--	---	---	---	---

		quality was		than 90% of pharmacists'	
		assessed.		recommendations.	
Ibrahim, O.	To shed light on the	The authors		Clinical pharmacists provide	The COVID-19 pandemic
M., Ibrahim,	roles of pharmacists	conducted a		direct patient care by	has prompted innovative
R. M.,	during the COVID-19	review to highlight		monitoring adverse drug	roles for pharmacists,
Ibrahim, Y. A.,	global pandemic,	the roles of both		reactions, ensuring	which may continue to be
Madawi, E.	emphasizing their	community and		individualized treatment,	relevant in the post-
A., & Al Deri,	contributions in	hospital		practicing evidence-based	pandemic world.
M. Y. (2022)	maintaining	pharmacists during		medicine, and evaluating	Pharmacists should
	pharmacy services	the COVID-19		drugs in clinical trials.	continue to adapt to
	continuity,	pandemic, focusing		Community pharmacists, as	changing circumstances
	supporting	on their		the most accessible	and be prepared to fulfill
	healthcare	contributions to		healthcare providers,	these expanded roles
	professionals, and	pharmacy services		increase community	beyond the pandemic.
	educating patients.	continuity, support		awareness of preventive	
		for healthcare		measures, balance medicine	
		professionals, and		supply and demand, offer	
		patient education.		drive-thru and home delivery	
				services, provide telehealth	
				counseling and psychological	
				support, refer suspected	
				COVID-19 patients, and	
				administer vaccinations	
				when available.	
Kozlicki, M.,	The purpose of this	A pre/post analysis	The analysis	The frequency of treatment	Utilization of quality
Lynch, B.,	quality	of dashboard	included 40	gaps decreased from 80%	measures dashboards can
Donoho, T.,	improvement	implementation	patients with	before dashboard	effectively decrease
Nichols, P., &	project was to	was conducted to	outdated	implementation to 32% after	treatment gaps in patients
Zuckerman,	evaluate the	assess the number	laboratory values	implementation. The median	with IBD receiving biologic
A. D. (2023)	implementation of a	of patients with	who required a	gap length also decreased	therapy. Integrated

therapy by (EHR) and prospectively pharmacy claims identifying patients database to with outdated identify patients on laboratory results. a biologic with outdated laboratory tests. Specialty pharmacists reviewed the dashboard and communicated via EHR if a new prescription and laboratory tests were needed.	
Yang, Q., Xie, The aim of this The study included The patients were Significant differences The treatmen	•
L., Zhang, W., retrospective, 136 patients divided into a observed between moderate COVID-19 pati	
Zhao, L., Wu, single-center case diagnosed with moderate (M) (M) and severe/critical (SC) be regularly every little of the control of the con	
H., Jiang, J., series was to report COVID-19 between group (n = 103) COVID-19 groups in chronic adjusted base	
& Wu, J. on the clinical January 28, 2020, and a severe and medical illnesses, fever, dry signs, clinical	
(2020) characteristics, and February 12, critical (SC) group cough, and dyspnea. Patients laboratory treatments, and 2020. Clinical in SC group showed imaging chang	ests, and

	prognoses of 136	characteristics,	(n = 33) based on	significant changes in	psychological counseling is
	patients diagnosed	laboratory tests,	disease severity.	laboratory parameters,	also recommended for
	with coronavirus	treatment		including decreased	patients throughout their
	disease 2019	features, and		lymphocyte count and	hospitalization.
	(COVID-19) at	prognoses were		increased inflammatory	
	Wuhan Third	summarized.		markers. Main therapeutic	
	Hospital in China.			drugs included antivirals,	
				antibiotics, and	
				glucocorticoids. Elderly	
				patients with chronic	
				diseases were more prone to	
				severe COVID-19.	
				Improvement in lymphocyte	
				count and C-reactive protein	
				levels correlated with	
				prognosis. Cautious use of	
				antiviral and broad-spectrum	
				antibacterial drugs	
				recommended, with regular	
				monitoring for drug-induced	
				liver injury. Regular	
				evaluation and adjustment of	
				treatment plans suggested	
				based on clinical parameters,	
				along with psychological	
				counseling for patients.	
Ying, W.,	To establish	Pharmacists	The study	Successful completion of	The developed
Qian, Y., &	management	implemented	involved	drug supply tasks, no	management practices
Kun, Z. (2021)	practices for drug	management	pharmacists and	occurrence of nosocomial	serve as a valuable
	supply and	practices at a	COVID-19	infections or medication	experience for COVID-19

	pharmaceutical care	designated hospital	patients at the	errors, effective adverse	prevention and
	during the COVID-19 epidemic.	in Jilin Province, China, focusing on drug supply and pharmaceutical care.	hospital in Jilin Province, China.	reaction monitoring, and participation in multidisciplinary consultations.	containment efforts globally.
Newman, T. V., San-Juan- Rodriguez, A., Parekh, N., Swart, E. C., Klein- Fedyshin, M., Shrank, W. H., & Hernandez, I. (2020)	To summarize evidence on community pharmacist-led chronic disease management interventions and their impact on clinical, utilization, and economic outcomes.	Systematic search of systematic reviews, meta-analyses, and narrative reviews in MEDLINE, EMBASE, and Cochrane Library databases.	Reviewed articles covered various chronic diseases, including diabetes, asthma, COPD, hypertension, heart failure, hyperlipidemia, and HIV/AIDS.	Community pharmacist-led interventions, primarily patient consultations and education, led to significant improvements in clinical outcomes across different chronic diseases. These included reductions in hemoglobin A1c, cholesterol levels, blood pressure, and readmission rates, as well as improvements in medication adherence and lung function.	Further research is needed to evaluate the impact of specific interventions on economic and utilization outcomes in chronic disease management by community pharmacists.
Jarvis, J. P., Peter, A. P., Keogh, M., Baldasare, V., Beanland, G. M., Wilkerson, Z. T., & Shaman, J. A. (2022)	To evaluate the real-world impact of a pharmacogenomics (PGx)-enriched comprehensive medication management (CMM) program on healthcare delivery.	Assessment of a voluntary PGx-enriched CMM program over 32 months in Medicare Advantage patients (≥65 years) receiving benefits through a state retirement system.		The program resulted in a reduction of ~\$7000 per patient in direct medical charges, totaling \$37 million. Healthcare resource utilization (HRU) shifted away from acute care services towards more sustainable primary care options. Improved medication risk assessment, patient/provider	These results validate the use of clinical decision support systems (CDSS) to integrate PGx and CMM for optimizing care in similar patient populations.

		Sample, Sampling:	communication via	
		Analysis included	pharmacist-mediated	
		5288 enrollees	medication action plans	
		compared to	(MAP), and sustained	
		22,357 non-	positive trends in HRU were	
		enrolled patients.	observed.	
Swen, J. J.,	To rigorously assess	Open-label,	Genotype-guided treatment	Large-scale implementation
van der	the clinical utility of	multicentre,	significantly reduced the	of genotype-guided
Wouden, C.	a pre-emptive	controlled, cluster-	incidence of clinically	treatment using
H., Manson,	genotyping strategy	randomised,	relevant adverse drug	pharmacogenetic panels
L. E.,	using a 12-gene	crossover	reactions in patients with	could enhance drug
Abdullah-	pharmacogenetic	implementation	actionable test results for the	therapy safety.
Koolmees, H.,	panel in preventing	study conducted	index drug (21.0% vs. 27.7%	
Blagec, K.,	adverse drug	across 18 hospitals,	in control group) and for all	
Blagus, T.,	reactions.	nine community	patients who received at	
& Rodríguez-		health centres, and	least one dose of the index	
González, C. J.		28 community	drug (21.5% vs. 28.6% in	
(2023)		pharmacies in	control group).	
		seven European		
		countries. Sample,		
		Sampling: 6944		
		patients aged 18		
		years or older		
		receiving a first		
		prescription for a		
		drug clinically		
		recommended in		
		the guidelines of		
		the Dutch		
		Pharmacogenetics		

Working Group (DPWG) were enrolled.

The research matrix summarizes findings from diverse studies in pharmacy practice. Martin et al. (2022) established DMT monitoring guidelines, found improved monitoring, and decreased pharmacist interventions post-dashboard implementation. Strand et al. (2020) highlighted the pivotal role of community pharmacists during the COVID-19 pandemic, emphasizing their contributions to maintaining healthcare delivery. Westerholm et al. (2023) assessed medication review competency among third-year pharmacy students, suggesting a need for enhanced training in certain areas. Liu et al. (2020) showcased Chinese pharmacists' response to the pandemic, emphasizing various measures to combat COVID-19. Yoshimura et al. (2022) discussed the importance of pharmacotherapy in older patients undergoing rehabilitation, emphasizing pharmacist involvement in medication management. Meng et al. (2023) evaluated pharmacist-led Medication Therapy Management (MTM) in ambulatory care, demonstrating improved patient outcomes and cost savings. Fratoni et al. (2021) provided guidance on therapeutic drug monitoring of β-lactam antibiotics, advocating for consensus guidelines to standardize practice. Ahmed et al. (2023) systematically reviewed pharmacist interventions in managing medication-related problems in PLWHA, highlighting their efficacy and acceptance. Ibrahim et al. (2022) underscored the pivotal roles of pharmacists during the COVID-19 pandemic, emphasizing their contributions to healthcare continuity and patient education. Kozlicki et al. (2023) evaluated a dashboard to prevent treatment gaps in IBD patients, noting a decrease in treatment gaps with integrated pharmacist monitoring. Lastly, Yang et al. (2020) reported on the clinical characteristics, treatments, and prognoses of COVID-19 patients, emphasizing the importance of tailored treatment plans and psychological support.

Results

Table 4: Themes, Sub-themes, Trends and Explanation

Theme	Sub-theme(s)	Trends	Explanation
Role of	- Community	- Increased reliance	Pharmacists have
Pharmacists	pharmacy services	on pharmacists for	played crucial roles
during COVID-	- Hospital	essential	in maintaining
19 pandemic	pharmacy services	healthcare services	healthcare delivery
	- Patient education	during the	and providing
	and support	pandemic -	essential services
		Expansion of	during the COVID-
		pharmacist roles	19 pandemic,
		beyond traditional	including offering
		responsibilities -	point-of-care
		Emphasis on	testing,
		patient education	vaccinations,
		and support to	telehealth
		combat	counseling, and
		misinformation	psychological
			support. They have
			bridged gaps in
			healthcare delivery
			and addressed
			public health needs
			amidst the
			pandemic.
Impact of	- Chronic disease	- Improved clinical	Pharmacist-led
Pharmacist-led	management -	outcomes across	interventions have
interventions	Medication	various chronic	demonstrated
	Therapy	diseases -	significant positive
	Management	Enhanced patient	impacts on patient
	(MTM) -	adherence and	outcomes,
	Therapeutic Drug	medication safety -	medication safety,
	Monitoring (TDM) -	Cost savings and	and healthcare
	Pharmacogenomics	resource	resource utilization.
	(PGx)	optimization -	These interventions
		Personalized	span across various
		medicine through	domains, including
		pharmacogenomics	chronic disease
		- Increased focus	management,
		on medication	medication therapy

optimization and monitoring

management, therapeutic drug monitoring, and pharmacogenomics, highlighting the diverse roles pharmacists play in optimizing patient care.

Pharmacy Education and Training - Medication
review
competency Pharmacogenomics
education Therapeutic drug
monitoring training

- Moderate selfassessed competency in medication review among pharmacy students - Need for enhanced training in pharmacogenomics and therapeutic drug monitoring -Emphasis on integrating practical skills and patient interaction in pharmacy education

Pharmacy education and training programs need to focus on enhancing practical skills, such as medication review competency and pharmacogenomics training, to better prepare students for their roles as pharmacists. There is a growing recognition of the importance of incorporating realworld skills and patient interaction in pharmacy curricula.

Drug Supply	- Drug supply	- Successful	Pharmacists have
and	management -	implementation of	played essential
Pharmaceutical	Pharmaceutical	drug supply	roles in ensuring
Care during	care practices -	management	uninterrupted drug
Epidemics	Adverse reaction	practices - Effective	supply and
	monitoring -	pharmaceutical	providing
	Interdisciplinary	care strategies to	pharmaceutical
	collaboration	ensure patient	care during
		safety - Integration	epidemics such as
		of pharmacists into	COVID-19. Effective
		multidisciplinary	management
		healthcare teams -	practices,
		Emphasis on	interdisciplinary
		adverse reaction	collaboration, and
		monitoring and	proactive
		medication safety	monitoring are
			critical for
			optimizing patient
			care and safety
			during public health
			crises.
Advances in	- Implementation	- Adoption of TDM	Therapeutic drug
Therapeutic	of TDM guidelines -	guidelines to	monitoring (TDM)
Drug	Optimization of β -	improve	guidelines and
Monitoring	lactam antibiotic	medication	practices are
(TDM)	therapy	optimization and	evolving to
		dosing -	optimize
		Recognition of the	medication therapy,
		need for	particularly in areas
		personalized	such as antibiotic
		medicine in	therapy. There is a
		antibiotic therapy -	growing emphasis
		Emphasis on target	on personalized
		attainment rates	medicine and
		and exposure	individualized
		thresholds in TDM	dosing to improve
		practices	clinical outcomes
			and minimize
			adverse drug
			events.

Pharmacists have emerged as frontline healthcare providers during the COVID-19 pandemic, expanding their roles beyond traditional responsibilities to offer essential services such as pointof-care testing, vaccinations, and patient education. Their contributions have been instrumental in maintaining healthcare delivery and addressing public health needs amidst the pandemic. Additionally, pharmacist-led interventions have shown significant positive impacts on patient outcomes, medication safety, and healthcare resource utilization, spanning across chronic disease management, medication therapy management, therapeutic drug monitoring, and pharmacogenomics. However, there is a recognized need to enhance pharmacy education and training programs to better prepare students for their evolving roles, emphasizing practical skills and patient interaction. Moreover, advancements in therapeutic drug monitoring (TDM) are driving personalized medicine approaches, particularly in optimizing antibiotic therapy, highlighting the importance of adherence to TDM guidelines and individualized dosing strategies for improving clinical outcomes and minimizing adverse drug events.

Discussion

In addition to the pivotal roles pharmacists play during crises like the COVID-19 pandemic, their contributions extend to the optimization of medication therapy across diverse patient populations. Studies such as those conducted by Meng et al. (2023) and Ahmed et al. (2023) shed light on the impact of pharmacist-led interventions, including medication therapy management (MTM) services, in ambulatory care settings and among people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). These interventions have not only improved clinical outcomes and medication adherence but have also resulted in significant cost savings and resource optimization. As the healthcare landscape continues to evolve, pharmacist-led initiatives are increasingly recognized as integral components of comprehensive patient care, with the potential to mitigate medication-related problems and enhance therapeutic outcomes.

Furthermore, advancements in pharmacogenomics (PGx) have revolutionized the landscape of personalized medicine, offering tailored approaches to medication therapy based on individual genetic profiles. The study by Swen et al. (2023) underscores the clinical utility of pre-emptive genotyping strategies using pharmacokinetic panels in preventing adverse

drug reactions. By identifying actionable genetic variants and guiding treatment decisions accordingly, pharmacogenomics holds promise in optimizing drug therapy safety and efficacy. However, widespread implementation of pharmacogenomics testing faces challenges related to infrastructure, reimbursement, and clinician education, highlighting the need for concerted efforts to overcome barriers and realize the full potential of personalized medicine in clinical practice.

Moreover, pharmacy education and training programs play a pivotal role in shaping the future of pharmacy practice and ensuring the competency of future pharmacists. Studies such as those by Westerholm et al. (2023) emphasize the importance of enhancing medication review competency and incorporating practical skills such as patient interaction and documentation into pharmacy curricula. As the scope of pharmacy, practice expands and becomes increasingly complex, education and training programs must evolve to equip pharmacists with the necessary knowledge and skills to meet the demands of contemporary healthcare delivery.

Additionally, the integration of technology and data analytics has emerged as a transformative force in pharmacy practice, enabling pharmacists to leverage real-time data and clinical decision support tools to optimize medication therapy and improve patient outcomes. Studies such as those by Martin et al. (2022) and Kozlicki et al. (2023) highlight the role of electronic dashboards and quality measures in identifying treatment gaps, monitoring medication safety parameters, and facilitating targeted pharmacist interventions. As healthcare systems transition towards value-based care models, the integration of technology-enabled solutions holds immense potential in enhancing medication optimization, reducing adverse drug events, and improving overall healthcare quality and efficiency.

The collective evidence from these studies underscores the indispensable role of pharmacists in contemporary healthcare delivery and the need for ongoing support and investment in pharmacy practice. From addressing public health crises to optimizing medication therapy and advancing personalized medicine, pharmacists are instrumental in driving positive impacts on patient health outcomes and healthcare system sustainability. As pharmacists continue to adapt to evolving healthcare needs and technological advancements, collaboration across healthcare sectors and continued professional development will be essential

in realizing the full potential of pharmacy practice in improving patient care and population health.

Suggestion

It is recommended that politicians and healthcare organizations acknowledge the critical role that chemists play in managing chronic diseases and promoting public health, based on the results of this study. The use of healthcare resources and patient outcomes can be greatly enhanced by funding pharmacist-led initiatives like pharmacogenomics testing and medication therapy management (MTM) programs. Additionally, incorporating technology-enabled solutions can improve drug optimization and enable focused chemist interventions. Examples of these solutions are electronic dashboards and clinical decision support systems. Through utilizing chemists' expertise and expanding their scope of practice, healthcare systems may more effectively tackle the rising prevalence of chronic illnesses and enhance the overall quality and efficiency of healthcare provision.

Limitations

The current work has yielded interesting insights; however, it is important to acknowledge numerous limitations. First off, the retrospective nature of the study may have reduced the findings' generalizability and added selection bias. In addition, the breadth and depth of the evidence synthesized may have been limited by the dependence on secondary literature, such as systematic reviews and meta-analyses. Furthermore, it is possible that the diversity of interventions and results across the included studies made it difficult to do direct comparisons and meta-analyses. In order to get over these restrictions and present more solid data on the effectiveness of pharmacist-led treatments in the management of chronic illnesses, more research using prospective study designs and primary data collection techniques is required.

Recommendation

A number of suggestions for further study and application can be made in light of the constraints that have been found. Initially, to assess the efficacy of certain pharmacist-led strategies in enhancing clinical, utilization, and financial outcomes across various chronic conditions, carefully planned prospective trials are required. To aid in comparability and meta-analysis, efforts should also be undertaken to standardize outcome measures and

intervention regimens. In order to optimize pharmacists' contributions to patient care and public health, healthcare organizations should also priorities the integration of pharmacists into interdisciplinary care teams and make investments in their ongoing education and training. Finally, in order to encourage the widespread use of pharmacist-led interventions in healthcare delivery, governments ought to think about putting laws and reimbursement systems in place.

Conclusion

The current study offers insightful information about the effects of pharmacist-led interventions on the treatment of chronic illnesses and the consequences for outcomes related to clinical, utilization, and financial aspects. The evidence summarized highlights the critical role that chemists play in maximizing patient care and the sustainability of the healthcare system, notwithstanding significant constraints. Healthcare organizations can successfully handle the rising burden of chronic diseases and enhance the general quality and efficiency of healthcare by utilizing chemist expertise, incorporating technology-enabled solutions, and encouraging interdisciplinary collaboration. In the future, coordinated efforts by all parties involved in the healthcare system will be necessary to fully achieve the promise of pharmacist-led interventions in enhancing community health and patient outcomes.

References

- Abdulla, A., van den Broek, P., Ewoldt, T. M., Muller, A. E., Endeman, H., & Koch, B. C. (2022). Barriers and facilitators in the clinical implementation of beta-lactam therapeutic drug monitoring in critically ill patients: a critical review. Therapeutic Drug Monitoring, 44(1), 112-120.
- Ahmed, A., Tanveer, M., Dujaili, J. A., Chuah, L. H., Hashmi, F. K., & Awaisu, A. (2023). Pharmacist-involved antiretroviral stewardship programs in people living with HIV/AIDS: A systematic review. AIDS Patient Care and STDs, 37(1), 31-52.
- Ahmed, F., Hammad, S., Redmann, O., Smith, C., Edwards, C., Kader, C., ... & Zeidan, R. (2024). The Effect of Pharmacist-Led Telemedicine on A1c Reduction During the COVID-19 Pandemic. Telemedicine and e-Health, 30(1), 166-172.

- Balogun, O. D., Ayo-Farai, O., Ogundairo, O., Maduka, C. P., Okongwu, C.
 C., Babarinde, A. O., & Sodamade, O. T. (2024). The role of pharmacists in personalised medicine: a review of integrating pharmacogenomics into clinical practice. International Medical Science Research Journal, 4(1), 19-36.
- Brajković, A., Bosnar, L., Nascimento, M. M. G. D., Prkačin, I., Balenović, A., Ramalho de Oliveira, D., & Mucalo, I. (2022). Healthcare utilisation and clinical outcomes in older cardiovascular patients receiving comprehensive medication management services: a nonrandomised clinical study. International Journal of Environmental Research and Public Health, 19(5), 2781.
- Dzierba, A. L., Muir, J., Dilawri, A., & Buckley, M. S. (2023). Optimizing pharmacotherapy regimens in adult patients receiving extracorporeal membrane oxygenation: A narrative review for clinical pharmacists. Journal of the American College of Clinical Pharmacy.
- Fang, Z., Zhang, H., Guo, J., & Guo, J. (2023). Overview of therapeutic drug monitoring and clinical practice. Talanta, 124996.
- Fratoni, A. J., Nicolau, D. P., & Kuti, J. L. (2021). A guide to therapeutic drug monitoring of β -lactam antibiotics. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 41(2), 220-233.
- Haidar, C. E., Petry, N., Oxencis, C., Douglas, J. S., & Hoffman, J. M. (2022).

 ASHP statement on the pharmacist's role in clinical pharmacogenomics. American Journal of Health-System Pharmacy, 79(8), 704-707.
- Hua, X., Gu, M., Zeng, F., Hu, H., Zhou, T., Zhang, Y., & Shi, C. (2020). Pharmacy administration and pharmaceutical care practice in a module hospital during the COVID-19 epidemic. Journal of the American Pharmacists Association, 60(3), 431-438.
- Ibrahim, O. M., Ibrahim, R. M., Ibrahim, Y. A., Madawi, E. A., & Al Deri, M. Y. (2022). Shedding the light on Pharmacists' roles during COVID-19 global pandemic. Saudi Pharmaceutical Journal, 30(1), 14-27.
- Ibrahim, O. M., Ibrahim, R. M., Z Al Meslamani, A., & Al Mazrouei, N. (2023). Role of telepharmacy in pharmacist counselling to coronavirus disease 2019 patients and medication dispensing errors. Journal of Telemedicine and Telecare, 29(1), 18-27.

- Iqbal, M. J., Mohammad Ishaq, G., & Assiri, A. A. (2023). Connecting Pharmacists and Other Health Care Providers (HCPs) towards Drug Therapy Optimization: A Pharmaceutical Care Approach. International Journal of Clinical Practice, 2023.
- Jarvis, J. P., Peter, A. P., Keogh, M., Baldasare, V., Beanland, G. M., Wilkerson, Z. T., ... & Shaman, J. A. (2022). Real-world impact of a pharmacogenomics-enriched comprehensive medication management program. Journal of personalized medicine, 12(3), 421.
- Jasińska-Stroschein, M., & Waszyk-Nowaczyk, M. (2023).

 Multidimensional Interventions on Supporting Disease

 Management for Hospitalized Patients with Heart Failure: The

 Role of Clinical and Community Pharmacists. Journal of Clinical

 Medicine, 12(8), 3037.
- K Bakken, B., Bozymski, K. M., Foster, B., Blaeser, S. D., Mott, D. A., Doucette, W. R., ... & Schommer, J. C. (2023). Ambulatory care pharmacy practice: findings from the 2019 National Pharmacist Workforce Survey. American journal of health-system pharmacy, 80(5), 284-295.
- Kozlicki, M., Lynch, B., Donoho, T., Nichols, P., & Zuckerman, A. D. (2023). Development and implementation of a laboratory monitoring dashboard to reduce treatment gaps in inflammatory bowel disease. American Journal of Health-System Pharmacy, 80(Supplement 2), S55-S61.
- Kunming, P., Xiaotian, J., Qing, X., Chenqi, X., Xiaoqiang, D., & Qian Zhou, L. (2023). Impact of pharmacist intervention in reducing vancomycin-associated acute kidney injury: A systematic review and meta-analysis. British Journal of Clinical Pharmacology, 89(2), 526-535.
- Lat, I., Paciullo, C., Daley, M. J., MacLaren, R., Bolesta, S., McCann, J., ... & Meyer, T. A. (2020). Position paper on critical care pharmacy services: 2020 update. Critical care medicine, 48(9), e813-e834.
- Li, N., Song, J. F., Zhang, M. Z., Lv, X. M., Hua, H. L., & Chang, Y. L. (2023). Impact of medication therapy management (MTM) service model on multi-morbidity (MMD) patients with hypertension: a pilot RCT. BMC geriatrics, 23(1), 1-13.
- Liu, S., Luo, P., Tang, M., Hu, Q., Polidoro, J. P., Sun, S., & Gong, Z. (2020).

 Providing pharmacy services during the coronavirus

- pandemic. International journal of clinical pharmacy, 42, 299-304.
- Lopez, M. I., Cocohoba, J., Cohen, S. E., Trainor, N., Levy, M. M., & Dong, B. J. (2020). Implementation of pre-exposure prophylaxis at a community pharmacy through a collaborative practice agreement with San Francisco Department of Public Health. Journal of the American Pharmacists Association, 60(1), 138-144.
- Mahmoudjafari, Z., Alexander, M., Roddy, J., Shaw, R., Shigle, T. L., Timlin, C., & Culos, K. (2020). American Society for Transplantation and Cellular Therapy Pharmacy Special Interest Group position statement on pharmacy practice management and clinical management for COVID-19 in hematopoietic cell transplantation and cellular therapy patients in the United States. Biology of Blood and Marrow Transplantation, 26(6), 1043-1049.
- Martin, A. W., Isaac, J., & Furbish, A. (2022). Implementation of a pharmacist-managed population health monitoring tool for disease modifying therapies in treatment of patients with multiple sclerosis in a veterans affairs medical center. Journal of the American College of Clinical Pharmacy, 5(1), 49-57.
- Meng, Q., Sun, L., Ma, Y., Wei, Y., Ma, X., Yang, L., ... & Gu, H. (2023). The impact of pharmacist practice of medication therapy management in ambulatory care: an experience from a comprehensive Chinese hospital. BMC Health Services Research, 23(1), 1-9.
- Merks, P., Jakubowska, M., Drelich, E., Świeczkowski, D., Bogusz, J., Bilmin, K., ... & Vaillancourt, R. (2021). The legal extension of the role of pharmacists in light of the COVID-19 global pandemic. Research in Social and Administrative Pharmacy, 17(1), 1807-1812.
- Myers, G., Stevens, J., Flewelling, A., Richard, J., & London, M. (2023). Evaluation and clinical impact of a pharmacist-led, interdisciplinary service focusing on education, monitoring and toxicity management of immune checkpoint inhibitors. Journal of Oncology Pharmacy Practice, 29(1), 145-154.
- Newman, T. V., San-Juan-Rodriguez, A., Parekh, N., Swart, E. C., Klein-Fedyshin, M., Shrank, W. H., & Hernandez, I. (2020). Impact of community pharmacist-led interventions in chronic disease management on clinical, utilization, and economic outcomes: an

- umbrella review. Research in Social and Administrative Pharmacy, 16(9), 1155-1165.
- Ng, R., El-Den, S., Stewart, V., Collins, J. C., Roennfeldt, H., McMillan, S. S., ... & O'Reilly, C. L. (2022). Pharmacist-led interventions for people living with severe and persistent mental illness: A systematic review. Australian & New Zealand Journal of Psychiatry, 56(9), 1080-1103.
- Nichols, H., Cannon, C. P., Scirica, B. M., & Fisher, N. D. (2022). A remote hypertension management program clinical algorithm. Clinical Cardiology, 45(12), 1147-1162.
- O'Sullivan, T. A., Sy, E., & Bacci, J. L. (2020). Essential attributes for the community pharmacist as care provider. American Journal of Pharmaceutical Education, 84(1), 7125.
- Olson, C., & Vallabh, A. (2024). A retrospective comparison of pharmacist and psychiatrist-led medication management clinics in an outpatient setting. Journal of the American College of Clinical Pharmacy, 7(2), 90-94.
- Patounas, M., Lau, E. T., Rigby, D., Chan, V., & Nissen, L. M. (2023).

 Development and trial of an instrument to evaluate accredited pharmacists' clinical home medicines review reports in Australia. Journal of Pharmacy Practice and Research, 53(1), 32-38.
- Pedersen, C. A., Schneider, P. J., Ganio, M. C., & Scheckelhoff, D. J. (2020). ASHP national survey of pharmacy practice in hospital settings: prescribing and transcribing—2019. American Journal of Health-System Pharmacy, 77(13), 1026-1050.
- Pruette, M. E., Zarzar, T. R., & Sheitman, B. B. (2023). Expanding clozapine use in state prisons: a review of the North Carolina experience. Journal of correctional health care, 29(2), 109-114.
- Radley, A., De Bruin, M., Inglis, S. K., Donnan, P. T., Hapca, A., Barclay, S. T., ... & Dillon, J. F. (2020). Clinical effectiveness of pharmacist-led versus conventionally delivered antiviral treatment for hepatitis C virus in patients receiving opioid substitution therapy: a pragmatic, cluster-randomised trial. The lancet Gastroenterology & hepatology, 5(9), 809-818.
- Rech, M. A., Gurnani, P. K., Peppard, W. J., Smetana, K. S., Van Berkel, M. A., Hammond, D. A., ... & PHARM-CRIT Investigators. (2021). Pharmacist avoidance or reductions in medical costs in critically

- ill adults: PHARM-CRIT study. Critical care explorations, 3(12), e0594.
- Reuter, S. E., Stocker, S. L., Alffenaar, J. W. C., Baldelli, S., Cattaneo, D., Jones, G., ... & Marriott, D. J. (2022). Optimal practice for vancomycin therapeutic drug monitoring: position statement from the anti-infectives committee of the international association of therapeutic drug monitoring and clinical toxicology. Therapeutic Drug Monitoring, 44(1), 121-132.
- Rybak, M. J., Le, J., Lodise, T., Levine, D., Bradley, J., Liu, C., ... & Lomaestro, B. M. (2020). Executive summary: therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Journal of the Pediatric Infectious Diseases Society, 9(3), 281-284.
- Santana, C. R., de Oliveira, M. G. G., Camargo, M. S., Moreira, P. M. B., de Castro, P. R., Aguiar, E. C., & Mistro, S. (2024). Improving pharmaceutical practice in diabetes care using point-of-care glycated haemoglobin testing in the community pharmacy. International Journal of Pharmacy Practice, 32(1), 46-51.
- Strand, M. A., Bratberg, J., Eukel, H., Hardy, M., & Williams, C. (2020). Peer Reviewed: Community Pharmacists' Contributions to Disease Management During the COVID-19 Pandemic. Preventing chronic disease, 17.
- Swen, J. J., van der Wouden, C. H., Manson, L. E., Abdullah-Koolmees, H., Blagec, K., Blagus, T., ... & Rodríguez-González, C. J. (2023). A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. The Lancet, 401(10374), 347-356.
- Syversen, M. O., Shah, S. F., Mathiesen, L., Mowé, M., & Lea, M. (2023).

 Effect of integrated medicines management on the quality of drug treatment in hospitalised multimorbid patients—a secondary endpoint analysis of a randomised controlled trial. International Journal of Pharmacy Practice, 31(3), 314-320.
- Tellor, K. B., & Armbruster, A. L. (2023). Key Points for Pharmacists From the ACC Expert Consensus Decision Pathway for Patients

- Hospitalized With Heart Failure. Journal of Pharmacy Practice, 36(3), 662-667.
- Thorakkattil, S. A., Parakkal, S. A., Arain, S., & AlDobayan, Z. (2023). A patient-centered ambulatory care pharmacy design to abate the real-world patient counseling challenges. Exploratory Research in Clinical and Social Pharmacy, 9, 100248.
- Tsui, J. I., Gojic, A. J., Pierce, K. A., Tung, E. L., Connolly, N. C., Radick, A. C., ... & Glick, S. N. (2024). Pilot study of a community pharmacist led program to treat hepatitis C virus among people who inject drugs. Drug and Alcohol Dependence Reports, 10, 100213.
- Venugopalan, V., Casaus, D., Kainz, L., Slaton, C. N., Hurst, N., Bruzzone, M., ... & Alshaer, M. H. (2023). Use of therapeutic drug monitoring to characterize cefepime-related neurotoxicity. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 43(1), 6-14.
- Weeda, E., Gilbert, R. E., Kolo, S. J., Haney, J. S., Hazard, L. T., Taber, D. J., & Axon, R. N. (2023). Impact of pharmacist-driven transitions of care interventions on post-hospital outcomes among patients with coronary artery disease: a systematic review. Journal of pharmacy practice, 36(3), 668-678.
- Westerholm, A., Leiman, K., Kiiski, A., Pohjanoksa-Mäntylä, M., Mistry, A., & Airaksinen, M. (2023). Developing Medication Review Competency in Undergraduate Pharmacy Training: A Self-Assessment by Third-Year Students. International Journal of Environmental Research and Public Health, 20(6), 5079.
- Woods, A. M., Mara, K. C., & Rivera, C. G. (2023). Clinical pharmacists' interventions and therapeutic drug monitoring in patients with mycobacterial infections. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 30, 100346.
- Yang, Q., Xie, L., Zhang, W., Zhao, L., Wu, H., Jiang, J., ... & Wu, J. (2020).

 Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. Journal of clinical pharmacy and therapeutics, 45(4), 609-616.
- Ying, W., Qian, Y., & Kun, Z. (2021). Drugs supply and pharmaceutical care management practices at a designated hospital during the COVID-19 epidemic. Research in Social and Administrative Pharmacy, 17(1), 1978-1983.

- Yoshimura, Y., Matsumoto, A., & Momosaki, R. (2022). Pharmacotherapy and the role of pharmacists in rehabilitation medicine. Progress in Rehabilitation Medicine, 7, 20220025.
- Zuckerman, A. D., Mourani, J., Smith, A., Ortega, M., Donovan, J. L., Gazda, N. P., ... & Pierce, G. (2023). 2022 ASHP Survey of Health-System Specialty Pharmacy Practice: Clinical Services. American Journal of Health-System Pharmacy, 80(13), 827-841.