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ABSTRACT: 

In the present paper, we have established coefficient inequality 

for a linearly distributed periodic subclass of class of starlike 

analytic functions i.e. sharp upper bounds of the Fekete–Szegö 

functional |a3 − µa2
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f(z) =  z + ∑ an
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n=2 zn, |z| < 1 belonging to this subclass. 
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Introduction  

 

MATHEMATICS SUBJECT CLASSIFICATION: 30C50 

1. Introduction : We denote the class of functions of the type 

                               f(z) =  z + ∑ an
∞
n=2 zn                                                                 

(1.1) 

which are analytic in the unit disc given by 𝔼 = {z: |z| < 1|}, by the 

symbol 𝓐, We denote the class of functions of the type (1.1), 

which are analytic as well as univalent in 𝔼, by the symbol 𝓢,   

 In 1916, Bieber Bach ([3]) proved that |a2| ≤ 2 for the 

functions f(z)Î𝓢. In 1923, Löwner [14] proved that |a3| ≤ 3 for 

the functions f(z)Î𝓢..  

         With the known estimates |a2| ≤ 2 and |a3| ≤ 3, it was 

expected to try to find some relation between a3 and a2
2 for the 

class 𝓢,Fekete and Szegö[4] used Löwner’s method to prove the 

following well known result for the class 𝓢.  

Let f(z) Î𝓢, then 
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|a3 − µa2
2| ≤ [

3 − 4µ     if µ ≤ 0;                             
1                       , if 0 ≤ µ ≤ 1;

4µ − 3,     ifµ ≥ 1.                               
                                                             

(1.2) 

         The inequality (1.2) plays a very important role in determining 

estimates of higher coefficients for some sub classes 𝓢([3], [9]). 

Let us define some subclasses of 𝓢. 

         We denote by S*, the class of univalent starlike functions  

g(z) = z +∑bnz
n

∞

n=2

∈ 𝓐 

and satisfying the condition  

Re (
zg(z)

g(z)
) > 0, z ∈ 𝔼.      

                             (1.3) 

         We denote by 𝒦, the class of univalent convex functions 

h(z) =  z +∑cnz
n

∞

n=2

, z ∈ 𝓐 

and satisfying the condition 

Re
((zh′(z))

h′(z)
> 0, z ∈ 𝔼.      

                             (1.4) 

         A function f(z) ∈ 𝓐 is said to be close to convex if there exists 

g(z) ∈ S∗ such that  

Re (
zf′(z)

g(z)
) > 0, z ∈ 𝔼.      

                             (1.5) 

         The class of close to convex functions is denoted by C and was 

introduced by Duran [6] and it was shown by him that all close to 

convex functions are univalent. 

S∗(A, B) = {f(z) ∈ 𝓐;
zf′(z)

f(z)
≺ 

1+Az

1+Bz
, −1 ≤ B < A ≤ 1, z ∈ 𝔼}                                            

(1.6) 

𝒦(A, B) = {f(z) ∈ 𝓐;
(zf′(z))′

f′(z)
≺ 

1+Az

1+Bz
, −1 ≤ B < A ≤ 1, z ∈ 𝔼}                                        

(1.7)     

         It is obvious that S∗(A, B) is a subclass of S∗ and 𝒦 (A, B) is a 

subclass of 𝒦.  

Several authors introduced various classes and subclasses of 

univalent functions and established coefficient inequalities for 

these classes ([1], [2], [4]-[8], [10]-[54]). 

In our previous paper, we introduced the class LDS∗ and 

established coefficient inequality ([4]) for the same. 

Now, we introduce linearly distributed periodic subclass as 
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{f(z) ∈ 𝓐;(
αzf ′(z)

f(αz)
) ≺  {

1 + Aw(z)

1 + Bw(z)
} ; z ∈ 𝔼,−1 ≤ B < A ≤ 1} 

and we will denote this class as LDS∗(A, B). 

Symbol ≺ stands for subordination, which we define as follows: 

 

Principle of Subordination: Let f(z) and F(z) be two functions 

analytic in 𝔼. Then f(z) is called subordinate to F(z) in 𝔼 if there 

exists a function w(z) analytic in 𝔼 satisfying the conditions 

w(0) = 0 and |w(z)| < 1 such that f(z) = F(w(z));  zÎ 𝔼 and we 

write f(z)  ≺  F(z). 

By 𝒰, we denote the class of analytic bounded functions of the 

form   

w(z) =  ∑ dnz
n∞

n=1 , w(0) = 0, |w(z)| < 1.                                                                

(1.10) 

It is known that |d1| ≤ 1, |d2| ≤  1 − |d1|
2.                                                     

(1.11) 

2. PRELIMINARY LEMMAS:         For 0 <  c <  1, we write 

w(z)  = (
c+z

1+cz
) so that 

1+w(z)

1−w(z)
 =  1 + 2cz + 2z2 +⋯.                                                                   

(2.1) 

3. MAIN RESULTS 

THEOREM 3.1: Let f(z)  ∈ LDS∗(A, B), then 

(3 − α2)(2 − α)

A − B
|a3 − μa2

2|

≤  

{
  
 

  
 (αA − 2B) −

(A − B)(3 − α2)

(2 − α)
μ,                    if μ ≤

(2 − α)(αA − 2B + α − 2)

(A − B)(3 − α2)
;  (3.1)

(2 − α), if 
(2 − α)(αA − 2B + α − 2)

(A − B)(3 − α2)
≤ μ ≤

(2 − α)(αA − 2B + α − 2)

(A − B)(3 − α2)
;  (3.2)

(A − B)(3 − α2)

(2 − α)
μ − (αA − 2B),                     if μ ≥

(2 − α)(αA − 2B + α − 2)

(A − B)(3 − α2)
;  (3.3)

 

The results are sharp. 

Proof: By definition of LDS∗(A, B), we have 

(
αzf′(z)

f(αz)
) ≺  {

1+Aw(z)

1+Bw(z)
} ;w(z) ∈ 𝒰.                                                                              

(3.4) 
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 Expanding the series (3.4) and identifying terms, we get 

a2 =
A−B

2−α
c1                                                                                                                                 

(3.5) 

𝑎3 =
𝐴−𝐵

3−𝛼2
𝑐2 + 

(𝐴−𝐵)(𝛼𝐴−2𝐵)

(3−𝛼2)(2−𝛼)
𝑐1
2.                                                                                               

(3.6) 

From (3.5) and (3.6), we obtain 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
(𝑎3 − 𝜇𝑎2

2) = (2 − 𝛼)𝑐2 + [(𝛼𝐴 − 2𝐵) −

(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇] 𝑐1

2.                                (3.7) 

Taking absolute value and using Triangular inequality, (3.7) can be 

rewritten as  

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = (2 − 𝛼)|𝑐2| + |(𝛼𝐴 − 2𝐵) −

(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇| |𝑐1

2|.                            (3.8) 

Using (1.9) in (3.8), Simple calculations yield 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = (2 − 𝛼) + {|(𝛼𝐴 − 2𝐵) −

(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇| − (2 − 𝛼)} |𝑐1

2|.              (3.9)            

Case I:  𝜇 ≤
(2−𝛼)(𝛼𝐴−2𝐵)

(𝐴−𝐵)(3−𝛼2)
.  

In this case, (3.9) can be rewritten as 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = (2 − 𝛼) + {(𝛼𝐴 − 2𝐵 − 2 + 𝛼) −

(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇} |𝑐1

2|.                        (3.10) 

Subcase I (a): 𝜇 ≤
(2−𝛼)(𝛼𝐴−2𝐵+𝛼−2)

(𝐴−𝐵)(3−𝛼2)
.  

Using (1.9), (3.10) becomes 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = (𝛼𝐴 − 2𝐵) −
(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇.                                                           

(3.11) 



Journal of Namibian Studies, 33 S2 (2023): 6325-6334       ISSN: 2197-5523 (online) 

 

6329 

 

Subcase I (b): 𝜇 ≥
(2−𝛼)(𝛼𝐴−2𝐵+𝛼−2)

(𝐴−𝐵)(3−𝛼2)
 

We obtain from (3.11) 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = 2 − 𝛼.                                                                                              

(3.12) 

Case II: 𝜇 ≥
(2−𝛼)(𝛼𝐴−2𝐵)

(𝐴−𝐵)(3−𝛼2)
 

Preceding as in case I, we get  

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = (2 − 𝛼) + {
(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇 − (𝛼𝐴 −

2𝐵 + 2 − 𝛼)} |𝑐1
2|.                       (3.13) 

Subcase II (a): 𝜇 ≤
(2−𝛼)(𝛼𝐴−2𝐵−𝛼+2)

(𝐴−𝐵)(3−𝛼2)
 

(3.13) takes the form     

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = 2 − 𝛼.                                                                                      

(3.14) 

Combining subcase I (b) and subcase II (a), we obtain 

 
(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| = 2 − 𝛼, 𝑖𝑓 
(2−𝛼)(𝛼𝐴−2𝐵+𝛼−2)

(𝐴−𝐵)(3−𝛼2)
≤ 𝜇 ≤

(2−𝛼)(𝛼𝐴−2𝐵−𝛼+2)

(𝐴−𝐵)(3−𝛼2)
                 (3.15) 

Subcase II (b): 𝜇 ≥
(2−𝛼)(𝛼𝐴−2𝐵−𝛼+2)

(𝐴−𝐵)(3−𝛼2)
 

Preceding as in subcase I (a), we get 

(3−𝛼2)(2−𝛼)

𝐴−𝐵
|𝑎3 − 𝜇𝑎2

2| =
(𝐴−𝐵)(3−𝛼2)

(2−𝛼)
𝜇 − (𝛼𝐴 − 2𝐵).                                                   

(3.16) 

Combining (3.11), (3.15) and (3.16), the theorem is proved. 

Corollary 3.2:  Putting 𝛼 = 1, in the theorem, we get  
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|𝑎3 − 𝜇𝑎2
2| ≤

{
 
 

 
 3 − 4𝜇, 𝑖𝑓𝜇 ≤  

1

2
;

1𝑖𝑓
1

2
≤ 𝜇 ≤ 1;

4𝜇 − 3, 𝑖𝑓 𝜇 ≥  1

 

These estimates were derived by Keogh and Merkes [8] and are 

results for the class of univalent starlike functions. 

Corollary 3.3:  Putting 𝐴 = 1, 𝐵 = −1 in the theorem, we get  

|𝑎3 − 𝜇𝑎2
2|

≤  

{
  
 

  
 

2(2 + 𝛼)

(3 − 𝛼2)(2 − 𝛼)
−

4

(2 − 𝛼)2
𝜇,                    𝑖𝑓 𝜇 ≤

𝛼(2 − 𝛼)

(3 − 𝛼2)
;  (3.1)

2

(3 − 𝛼2)
                                     if 

α(2 − α)

(3 − α2)
≤ μ ≤

2(2 − α)

(3 − α2)
;  (3.2)

4

(2 − α)2
μ −

2(2 + α)

(3 − α2)(2 − α)
,                     if μ ≥

2(2 − α)

(3 − α2)
;  (3.3)

 

These estimates were derived by Choudhury C. [3] and are results 

for the class of univalent starlike functions. 
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