
Journal of Namibian Studies, 35 (2023): 254-282   ISSN: 2197-5523 (online) 
 
 

Special Issue on Engineering, Technology and Sciences 

 

254  

 Deep Iot: A Deep Learning Model For 

Anomaly And Botnet Detection In Iot 

Networks 

                                          Mounira Tarhouni1, Lamaa Sellami2, Bechir Alaya*3,  
                                                                    and Pascal Lorenz4 

 
               1Higher Institute of Computer Science and  
            Multimedia Gabes, Gabes University,  
                                      Tunisia. 

   2Numerical Control of Industrial Processes       
    Laboratory (CONPRIS), National School of    

   Engineers of Gabes, Gabes University, 
Tunisia. 

     3Department of Management Information    
    Systems and Production Management,     

    College of Business and Economics,  
   Qassim University, 6633, Buraidah, 51452, 

Saudi Arabia. 
  4Université de Haute-Alsace (UHA), MIPS, 

France. 

Abstract 

The Internet of Things (IoT) is currently transforming the world 

by connecting physical objects to the Internet. However, as the 

number of connected devices and the growth of IoT continue to 

rise, new network security threats are emerging due to 

vulnerabilities in these devices. One prevalent threat is the 

presence of bot malwares, which exploit vulnerable IoT devices 

to launch cyber attacks. To address these risks, there is a need for 

novel methods to detect IoT botnet networks. In this study, we 

propose a network intrusion detection model that utilizes deep 

learning, specifically an Autoencoder, to identify malicious 

botnet traffic. Our model takes a one-class classification 

approach, focusing on modeling the legitimate behavior of 

devices within the network to detect anomalies without 

requiring manual labeling. To analyze device behavior, our 

solution generates network flows from traffic data and selects 

relevant flow statistics. We evaluated our approach using the 

IOT-23 dataset, which includes captures of botnets executed on 

IoT devices as well as legitimate IoT device traffic. The results 

demonstrate that our detection model achieves a high predictive 

performance in identifying different types of botnets, with an 

impressive F1-score of 93% 
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1. Introduction  
The Internet has greatly evolved over recent years, allowing an 

increasing number of objects to interact with each other or with 

ourselves. Objects have different sizes, capacities, processing 

and computing power and support different types of 

applications, thus contributing to the emergence of the Internet 

of Things. The term "Internet of Things" or IoT first appeared in 

1999 in a speech by British engineer Kevin Ashton [1]. This 

technology mainly consists of connecting a very large number of 

everyday objects (phone, watch, surveillance camera, etc.) to 

the Internet network in order to offer services, through the 

integration of sensors, actuators and communication 

capabilities, thus linking the physical world to the virtual world 

[2]. In fact, IoT has introduced technology into daily life through 

applications in various fields such as health, smart cities, 

transportation. Due to advanced Internet technology, IoT 

applications have become a crucial topic. As manufacturers of 

connected objects accelerate innovation, more and more 

malicious activities involving such objects, or even cyber-attacks 

targeting them, are occurring. As these devices are not as secure 

as other computing devices, but also participate in security-

sensitive tasks, they represent a perfect target for attackers. 

Among several threats, botnets like Mirai are those that can 

most benefit from IoT security weaknesses. Malicious botnets 

are compromised device networks called "Bots" that are 

remotely controlled by a human operator called the 

"Botmaster" under a common command and control (C&C) 

infrastructure. They are used to distribute commands to Bots for 

malicious activities such as distributed denial of service (DDoS) 

attacks, spamming, and phishing [3]. 

Many existing security solutions focus narrowly on specific 

protocols or device characteristics. Additionally, lack of updates 

from manufacturers leaves devices vulnerable over time. Given 

these limitations, we propose addressing the important issue of 

botnet detection in IoT networks [4]. 

Our work aims to protect IoT networks from botnets 

without impacting performance or relying on manufacturers. 

Most solutions are tied to particular protocols or hardware. 

Instead, we seek to identify botnet activity through analysis of 

network behavior across devices. By detecting threats at the 

traffic level, rather than the level of individual protocols or 

devices, our approach can provide security agnostically. 

Without timely patches from makers, vulnerabilities persist. We 

aim to strengthen protection independent of vendor support 
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through direct examination of inter-device interactions. Rather 

than confining solutions to constrained parameters, we aim to 

recognize botnet command and control infrastructure as it 

functions within the larger network environment. By taking a 

holistic view and concentrating on dynamic traffic indicators 

over static device traits, we hope to close gaps left by targeted 

or outdated solutions. Our overarching goal is fortifying IoT 

network security and user security against sophisticated threats 

like botnets through minimally intrusive traffic analysis. This 

could help counter a significant risk in a protocol- and vendor-

agnostic manner. 

Given the promising work and challenges related to IoT 

networks, the main objective of this work is to secure and 

protect IoT networks from various malicious botnet activities 

without affecting network performance. Most of the botnet 

detection mechanisms proposed in the literature for IoT 

networks typically address only a few botnets and are applicable 

to only a specific protocol, and thus are based solely on 

simulated networks. As a result, a botnet network detection 

system tested on real traffic data from the IoT-23 dataset is 

needed, which can detect all malicious activities caused by 

botnets. Specifically, we aim to develop and evaluate a botnet 

detection system capable of: 

- Identifying a wide range of botnet threats using 

real-world IoT traffic data, rather than limiting to specific 

botnets or simulated scenarios. 

- Operating effectively across different IoT 

communication protocols, to provide protocol-agnostic 

security. 

- Protecting network performance by detecting 

botnet command and control traffic patterns without deep 

packet inspection of individual device communications. 

The goal is to provide a more robust and broadly applicable 

solution for securing IoT networks against real botnet threats 

represented in the IoT-23 dataset, without compromising 

usability or network efficiency. Addressing limitations of existing 

research will help strengthen cybersecurity for this important 

domain. 

This paper is divided into five main sections. Section 2 

provides an in-depth examination of the current state of the 

Internet of Things (IoT), including its definition, architectural 

framework, application areas, and underlying technologies. This 

section also evaluates IoT security concerns, exploring 

vulnerabilities in connected devices and threats posed by 
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botnets. Section 3 introduces our proposed approach for 

detecting botnets within IoT networks. This includes an 

overview of the dataset utilized as well as a detailed breakdown 

of the preprocessing, feature extraction, and classifier 

generation steps involved. Section 4 then presents the 

experimental findings from applying our methodology. 

Performance results are reported to demonstrate the 

effectiveness of the botnet detection system. The final section 

summarizes the key contributions and conclusions of this work. 

It also identifies potential avenues for future improvement and 

extensions to further advance this research area 

 

2.   Related Work 

Recent technological advancements in the fields of electronics, 

communications, and Internet development, coupled with the 

increasing proliferation of mobile devices in our daily lives, have 

given rise to the Internet of Things (IoT). This new era of the 

Internet is characterized by networks composed of thousands, 

or even millions, of objects, forming dense and large-scale 

networks. In this section, we introduce the concept of IoT, 

define its scope, examine its architecture, applications, and 

underlying technologies, while also scrutinizing the threats and 

vulnerabilities that loom over the IoT. We place a particular 

focus on botnets and cyberattacks targeting these networks, 

while reviewing the countermeasures proposed in the literature 

to safeguard IoT networks against a variety of attacks aimed at 

disrupting their optimal functioning. The term "Internet of 

Things" [5] refers to an increasingly extensive network of 

physical objects connected to the Internet, identified and 

recognized, just like all other conventional devices we use daily, 

such as computers, tablets, smartphones, etc. Another 

definition of the Internet of Things, as per [6], is a dynamic 

global network infrastructure with self-configuring capabilities 

based on interoperable communication standards and 

protocols, where physical and virtual "objects" have identities, 

physical attributes, virtual personalities, and intelligent 

interfaces, and they are seamlessly integrated into the 

information network. It represents the world of interconnected 

"objects," where humans interact with devices, and devices 

interact with each other (M2M) [7].  The Internet of Things (IoT) 

represents the new Industrial Revolution, and a critical decision 

in this realm is the selection of the communication network (or 

networks) that will facilitate communication among real-world 

objects, including machines, equipment, and installations. There 



Journal of Namibian Studies, 35 (2023): 254-282   ISSN: 2197-5523 (online) 
 
 

Special Issue on Engineering, Technology and Sciences 

 

258  

are numerous options available, such as machine-to-machine 

(M2M), Wi-Fi, Sigfox, ZigBee, among others [8]. There are 

several ways to architect an Internet of Things (IoT) system. One 

of the most common architectures divides IoT into three or five 

layers, as described by [9]. Within an Internet of Things (IoT) 

system, data is gathered through physical IoT devices in the 

Perception layer, transmitted for processing in the Transport 

layer, subjected to analysis employing machine learning and 

artificial intelligence in the Processing layer, supervised and 

managed via rule sets and service level agreements in the 

Application layer, and eventually translated into business 

intelligence to inform decision-making in the Business layer. 

 

                                  2.1 Vulnerabilities in the Internet of Things (IoT) 

IoT has a broad range of application domains, and in their 

article, Gubbi et al. [10] categorized IoT applications into four 

areas: 1) personal domain, 2) transportation domain, 3) 

environment, and 4) infrastructure and public services. A 

schematic representation of these domains is illustrated in 

Figure 1. Examples of these domains include industry, 

healthcare, education, and research. However, in the future, the 

concept of IoT is expected to be pervasive, available anywhere, 

anytime, and accessible to everyone. 

Since most Internet of Things (IoT) devices are designed for 

simple tasks, they lack strong security measures, making them 

vulnerable to weak security standards, and malicious actors 

take advantage of these vulnerabilities to attempt some of the 

common IoT attacks, as mentioned by [11]. Many mobile 

applications designed to control and monitor devices over the 

network do not support modern security standards such as 

Secure Socket Layer (SSL) for encrypting communications [12]. 

Additionally, many IoT devices typically do not allow the 

resetting of default credentials or the installation of software 

updates, resulting in an inability to address vulnerabilities. For 

example, in October 2017, a weakness was revealed in the 

widely used WPA2 encryption protocol in most modern wireless 

networks [13]. 
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Figure 1: Application Domains of the Internet of Things [10]. 
 
 Consequently, IoT is becoming increasingly popular as a 
powerful tool for cybercriminals. There are classifications to list 
IoT device vulnerabilities [14]. For instance, the Open Web 
Application Security Project (OWASP) Internet of Things project 
is designed to help manufacturers, developers, and consumers 
better understand security issues associated with IoT. OWASP 
provides a classification that identifies key attack surfaces, 
including memory, network, web interface, and more. Table 1 
lists the most common IoT vulnerabilities identified by OWASP. 
A security report on IoT devices by HP in July 2014 found an 
average of 25 vulnerabilities per device. For instance, 80% of 
devices did not require sufficiently complex and lengthy 
passwords, 70% did not encrypt local and remote traffic 
communications, and 60% contained vulnerable user interfaces 
and/or firmware [15]. 
 

                                    Table 1: Common Internet of Things Vulnerabilities [15]. 

Vulnerability Examples 

Insecure web/mobile/cloud 
interface 

 
 

- Inability to change default usernames and passwords : 
Devices or systems using default credentials do not allow 
users to change them, exposing them to security risks. 

- Weak passwords: The use of simple, easily guessable, or 
commonly used passwords makes accounts vulnerable to 
brute force attacks. 

- Lack of robust password recovery mechanisms: The 
absence of secure password recovery processes can allow 
unauthorized third parties to reset passwords and gain 
access to accounts. 
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- Exposed credentials: User credentials (username, password) 
can be exposed to third parties, facilitating unauthorized 
access. 

- Lack of account locking: Repeated unsuccessful login 
attempts are not blocked, making accounts vulnerable to 
brute force attacks. 

- Susceptibility to cross-site scripting, cross-site request 
forgery, and/or SQL injection: These security vulnerabilities 
allow attackers to execute malicious scripts, forge requests, 
or inject SQL code to compromise the system or data. 

Insufficient 
Authentication/Authorization 

- Privilege escalation: refers to the unauthorized elevation of 
user privileges 

- Lack of granular access control: means that the system does 
not have fine-grained control over who can access specific 
resources or perform particular actions 

Insecure network services - Vulnerability to denial of service attacks 
- Buffer overflow 
- Network ports or services unnecessarily exposed to the 

Internet 

Lack of transport 
encryption/integrity checking 

Without transport encryption, data is vulnerable to interception 
and tampering during transit, potentially exposing sensitive 
information to unauthorized access or modification. 

Privacy issues - Collection of unnecessary user data 
- Personal data exposed 
- Insufficient controls over access to user data 
- Lack of data retention limits 

Insufficient security 
configuration 
 

- Inability to separate administrators from users 
- Weak password policies 
- No security logging 
- Lack of data encryption options 
- No user notification of security events 

Insecure software/firmware 
 

- Lack of secure update mechanism 
- Update unencrypted files 
- Update unverified files before uploading 
- Insecure update server 
- Hard-coded credentials 

Poor physical security 
 

- Easy to disassemble device 
- Access to software via USB ports 
- Removable storage media 

 
 
Design vulnerabilities, such as weak or non-existent passwords, 
can lead to authentication or authorization attacks. For 
instance, in the case of Phillips Hue connected bulbs [16], the 
authentication password for controlling the lights is limited to 
only 6 alphanumeric characters, making it vulnerable to attacks. 
The Mirai botnet [17] is a notable example of attacks that 
exploit such vulnerabilities, primarily relying on weak or default 
passwords [18]. Additionally, Fouladi and Ghanoun [19] 
demonstrated a vulnerability in the implementation of the Z-
Wave key exchange protocol. This vulnerability could 
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potentially allow an attacker to gain complete control over a Z-
Wave door lock by only knowing the home ID and node of the 
target device. These pieces of information can be identified by 
monitoring Z-Wave network traffic over a short period due to 
the frequent polling of devices in a Z-Wave network. These 
examples underscore the importance of addressing design 
vulnerabilities and implementing robust security measures to 
protect IoT devices and networks from potential security 
threats and unauthorized access. Neglecting security measures 
by IoT device designers/manufacturers can create 
vulnerabilities for other household equipment. Consequently, 
the extensive adoption of Universal Plug and Play (UPnP) [20] 
within IoT devices becomes susceptible to exploitation for 
launching attacks. UPnP, a protocol used to open ports on 
network gateways, grants external individuals control over the 
devices. This feature is exploited by botnets, which leverage 
Telnet or SSH to connect to and infect IoT devices. 
 
 The implementation of traditional computer security 
mechanisms in IoT devices is challenging due to their limited 
computational power [18]. Vulnerabilities, such as buffer 
overflow in the Bluetooth protocol used by popular IoT devices 
like Arduino Yun, have been exploited by researchers [21]. The 
low power of IoT devices prevents the application of memory 
protection techniques like ASLR [18]. Furthermore, a 
vulnerability in the Bluetooth Low Energy (BLE) protocol has 
been discovered, compromising the confidentiality of key 
exchange due to potential brute-force attacks [22]. 
 
2.2 Botnets in IoT 

 Botnets are networks of compromised devices controlled by 
malicious software, allowing cybercriminals to gain 
unauthorized access and control over connected devices by 
employing specialized Trojan horses, resulting in a global 
network of compromised devices, primarily targeting unsecured 
IoT devices, with the Mirai botnet being the largest and most 
notable example [23][24]. 
 The lifecycle of a bot is illustrated in Figure 2, depicting the 
typical creation of a botnet in five phases [25][24]: initial 
infection, secondary injection, connection, malicious command 
and control, and update and maintenance. In the initial infection 
phase, the attacker scans a target subnet for known 
vulnerabilities and infects victim machines using various 
exploitation methods. In the secondary injection phase, 
infected hosts execute a shell-code script to retrieve the actual 
bot binary and install it on the target machine, turning it into a 
"Zombie" that automatically runs the malicious code upon 
reboot. The connection phase involves establishing a command 
and control (C&C) channel, connecting the zombie to it, and 
integrating it into the attacker's botnet army. 
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Figure 2. Lifecycle of a bot 
 
The malicious command and control phase is where the botnet's 
actual commanding and controlling activities take place, with 
the botmaster using the C&C channel to issue commands to the 
bot army, which receives and executes them. The maintenance 
and update phase focuses on keeping the bots active and 
updated, with botmasters employing dynamic DNS (DDNS) to 
maintain the botnets' invisibility and portability, allowing 
frequent server location changes and updates. Various IoT 
botnets that have undergone testing for botnet detection in IoT 
networks. These examples shed light on the different types of 
botnets, their attack strategies, and the specific vulnerabilities 
they exploit. One such botnet is Mirai, which infects IoT devices 
and serves a dual purpose of spreading the infection to poorly 
configured devices and launching DDoS attacks on a targeted 
server. Mirai establishes communication with a command and 
control (C&C) server through the Tor network and utilizes a 
loader to distribute executable files designed for various 
platforms. Initially, Mirai scans random public IP addresses by 
targeting TCP ports 23 or 2323. Another botnet called Torii 
derives its name from its utilization of Tor exit nodes. Torii 
employs telnet attacks and focuses on extracting sensitive 
information. It employs a modular architecture that enables it 
to retrieve and execute additional commands and binaries. Torii 
communicates with its C&C servers via TCP port 443, utilizing 
encryption to mimic HTTPS traffic. Okiru, also known as Satori, 
is a variant of Mirai that exploits a previously unknown 
vulnerability (CVE-2017-17215) present in Huawei HG532 
devices. Okiru injects malicious payloads and inundates its 
targets with manually crafted UDP or TCP packets. Hajime, on 
the other hand, is a highly sophisticated and flexible IoT worm 
that establishes a large peer-to-peer (P2P) botnet. It exploits 
Mirai's infection methods and employs brute force attacks. 
Hajime possesses the ability to self-update and swiftly expand 
its botnet by incorporating additional features. It employs SYN 
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scanning to discover new victims, targeting TCP ports 23 
(Telnet) and 5358 (WSDAPI). Other notable examples include 
Hide and Seek, which employs complex and decentralized 
communication techniques while utilizing anti-falsification 
methods. It spreads like a worm and can perform web 
exploitation similar to the Reaper botnet. Muhstik leverages 
web application exploits to compromise IoT devices, using IRC 
for control and commands. It primarily targets home routers like 
GPON, DDWRT, Tomato routers, and executes attacks in 
multiple stages involving payload delivery, downloading an 
XMRig miner, and incorporating an analysis module to expand 
the botnet. 
 Gagfyt targets vulnerable IoT devices such as Huawei and 
Realtek routers, as well as ASUS devices. It exploits existing 
vulnerabilities to convert these devices into bots for future 
DDoS attacks. Gagfyt also reuses certain code modules from 
Mirai. IRCbot, also known as "Chuck Norris," focuses on 
vulnerable routers and DSL modems to propagate a worm-like 
infection. It employs Internet Relay Chat (IRC) for 
communication with a bot master, utilizing removable drives 
and instant messaging programs for spreading purposes. Lastly, 
Hakai, initially based on Qbot, enhances its capabilities by 
exploiting CVE-2017-17215, which impacts Huawei HG352 
routers, Realtek routers, and other vulnerable IoT devices. It 
incorporates an efficient Telnet scanner to target devices with 
default or weak passwords. 
 
2.3 Intelligent Intrusion Detection Systems (IDS) in IoT 

 Research on intelligent Intrusion Detection Systems (IDS) in IoT 
environments is currently limited compared to traditional 
networks. The majority of studies focus on simulated networks 
using the 6LoWPAN protocol, which may hinder their 
applicability to other IoT protocols. 

  Botnet detection approaches in IoT environments can be 
classified into three categories: host-based detection, network-
based detection, and hybrid detection. In a host-based 
detection approach [26], a method employs a One-Class 
Support Vector Machine (OSVM) model trained with host-based 
data, such as CPU usage, memory, electrical potential 
difference, and CPU temperature. Although this approach 
demonstrates minimal resource consumption, it has only been 
tested on two types of IoT devices and with a limited set of 
features. 

  Another IDS called SVELTE [27] operates on IPv6 networks 
and utilizes a server module to establish network topology and 
safeguard sensor systems against internet-based attacks. 
Meanwhile, the client module provides an IPv6 network 
topology mapper and detects lost packets. This approach has 
been evaluated using a software simulator but requires 
software modification for sensors, which can be challenging for 
large-scale IoT networks. Nomm and Bahsi [28] propose an 
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unsupervised learning model for botnet detection. Their model 
employs one-class classification using methods like Local Outlier 
Factor (LOF), One-Class SVM, and Isolation Forest (IF) to identify 
legitimate traffic. However, this method may have a lower 
detection rate due to the difficulty of generating normal traffic 
for certain IoT devices. Manzoor and Morgan [29] develop an 
anomaly-based NIDS that uses a Support Vector Machine (SVM) 
to predict network traffic as either normal or an attack. 
Although this approach achieves a precision of 73% when tested 
against new attacks, it does not address the issue of false 
alarms. Zeng et al. [30] propose a hybrid detection approach 
that combines both host-based and network-based detection. 
They analyze nine features for host analysis and seventeen 
features for network analysis. This approach demonstrates 
effectiveness against IRC, P2P, and HTTP botnets. However, the 
analysis process may be time-consuming due to network 
violations in P2P bots. 
 In summary, the development of botnet detection 
approaches in IoT environments is still ongoing. Network-based 
approaches appear preferable due to resource limitations and 
the proliferation of IoT devices. Nevertheless, challenges 
persist, such as software modification for sensors and the 
management of false alarms. Further research is necessary to 
develop efficient and tailored IDS for IoT environments. 
 
3. Proposed Approach 
 
In this section, we introduce our approach to detect botnets in 
IoT networks while preserving their functionality. We address 
the need for easy-to-use IoT systems that shield users from the 
underlying technological complexity and protect against 
potential threats. Previous discussions highlighted the risks 
associated with IoT devices connected to the internet and 
exchanging data, particularly the concern of botnet attacks. We 
explored existing security solutions but acknowledged their 
limitations, especially when applied to resource-constrained 
devices. Our objective is to overcome these challenges and 
propose an effective botnet detection approach tailored for IoT 
networks. 
 
 
3.1 General Description of Proposed Approach 
We explore the benefits of traffic analysis in botnet detection 
and introduce our approach, which incorporates a flow-based 
traffic analysis model 
 
3.1.1. Traffic Analysis 

 In traditional botnet detection methods, payload analysis 
involves inspecting the content of TCP and UDP packets for 
specific malicious signatures. However, this approach has 
limitations, including resource-intensive operations, slow 
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processing speeds, and vulnerability to encryption. To 
overcome these challenges, we employ traffic analysis as an 
alternative approach. 
 Traffic analysis focuses on the overall characteristics of 
network traffic generated by IoT devices rather than inspecting 
packet payloads. This approach takes advantage of the notion 
that legitimate IoT network traffic exhibits a certain level of 
uniformity and can be characterized by specific attributes. 
Unlike payload-based methods, traffic analysis is not affected by 
encryption, and dedicated hardware can efficiently extract 
relevant traffic information without significantly impacting the 
IoT network. 
 Our approach involves examining the traffic flows within a 
defined time window. By analyzing the patterns and behaviors 
of these flows, we can identify anomalies associated with 
botnet activity. We leverage the inherent uniformity present in 
legitimate IoT network traffic to differentiate between normal 
and malicious behavior. Specific techniques used in our traffic 
analysis-based approach may include statistical analysis, 
machine learning algorithms, or artificial intelligence to identify 
malicious traffic patterns. By analyzing attributes such as flow 
duration, packet count, communication patterns, and other 
relevant features, we can detect and classify botnet activity 
accurately. 
 Overall, our traffic analysis-based approach provides a 
more efficient and effective method for detecting botnets in IoT 
networks. It overcomes the limitations of payload analysis, such 
as resource consumption and susceptibility to encryption, by 
focusing on the characteristics of network traffic. This approach 
enables us to identify and mitigate botnet threats while 
preserving the functionality and security of IoT devices. 
 
3.1.2 Overview of the Approach: 
Previous research has shown that certain classes of network 
traffic can be detected by analyzing their traffic patterns. In an 
IoT network, devices perform specific, repetitive tasks, resulting 
in a predictable and regular behavior as long as they remain 
uncompromised. Our approach takes advantage of this by 
utilizing one-class classifiers to model the normal behavior of 
IoT devices and detect anomalies, eliminating the need for 
labeled malicious data for training. To characterize legitimate 
IoT traffic, we consider static flow-based attributes such as total 
packet count, flow duration, average and variance of packet 
sizes, and more. By observing these attributes within a defined 
time window, we analyze the behavior of a flow. However, 
selecting an appropriate time window size is crucial. A window 
that is too small may miss important traffic patterns, while a 
window that is too large introduces longer detection delays. Our 
approach consists of two phases: learning and detection. During 
the learning phase, the detection system is trained using a set 
of known legitimate data attribute vectors to establish a model 
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of normal behavior for IoT devices. In the detection phase, the 
system actively monitors network traffic, generating attribute 
vectors from active flows and classifying them. If a set of 
attribute vectors is classified as malicious in real-time data, the 
corresponding flows are flagged as suspicious. 
 By leveraging traffic analysis and one-class classification, 
our approach provides a practical and efficient method for 
identifying botnet activity in IoT networks. It enables the 
detection of anomalies without relying on labeled malicious 
data, and it captures the inherent regularity of legitimate IoT 
traffic while minimizing false positives. 
 

  The proposed methodology, as illustrated in Figure 3, 
consists of two primary phases: 

  1- Data Preprocessing Phase: In this phase, we 
perform four steps. Firstly, we extract the flow features from 
the raw network capture using Tranalyzer, an open-source flow 
exporter. This tool calculates statistical flow-based features. The 
second and third steps involve encoding categorical data and 
standardizing the features, respectively. Lastly, we select the 
most representative subset of attributes using an attribute 
selection method tailored for one-class classification. This helps 
ensure accurate classification of botnet traffic. 
 2- Classification Model Construction Phase: The 
second phase focuses on constructing the classification model 
based on the selected features. We employ the Autoencoder 
algorithm, which is a one-class classification algorithm. The 
Autoencoder learns a compressed representation of normal 
traffic patterns by training on the chosen attributes. It 
reconstructs the input data and identifies deviations from 
normal patterns. Instances that cannot be properly 
reconstructed are deemed anomalies, potentially indicating 
botnet activity. 
 
 By following this two-phase approach and utilizing the 
Autoencoder algorithm, our methodology offers an effective 
solution for detecting botnet traffic in IoT networks. The 
preprocessing phase ensures the extraction and standardization 
of relevant features, while the classification phase employs 
deep learning techniques to identify anomalies associated with 
botnet activity. 
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Figure 3. Steps of the proposed approach 
 
3.2 Network capture 

  The raw network capture data used in our approach is derived 
from the Aposemat IoT-23 dataset [31]. This dataset aims to 
provide a comprehensive collection of real and labeled IoT 
malware infections along with benign IoT traffic. The network 
traffic was captured at the Stratosphere Laboratory, AIC Group, 
FEL, CTU University in the Czech Republic. 

   The IoT-23 dataset consists of twenty-three captures, 
known as scenarios, representing different types of labeled IoT 
network traffic. The original PCAP files were processed using the 
Zeek network traffic analyzer, with a 5-second time window for 
each capture. The scenarios are categorized into twenty 
captures of network traffic from IoT devices infected by twelve 
distinct botnet types, and three captures of legitimate IoT 
device traffic. 

   For the malicious scenarios, specific malware was executed 
on a Raspberry Pi, employing various protocols and performing 
diverse actions. On the other hand, the network traffic capture 
for the benign scenarios was obtained from three non-infected, 
real IoT devices: a Philips HUE smart LED lamp, an Amazon Echo 
smart home assistant, and a Somfy smart door lock. These 
devices represent genuine, uninfected hardware, allowing for 
the capture and analysis of normal network behavior. 
 Given the extensive size of the IoT-23 dataset, we selected 
twelve scenarios, one for each botnet type, and the three 
scenarios representing non-infected real IoT devices. Detailed 
information about these selected scenarios can be found in 
Tables 2 and 3. 
 
Table 2: The captures of botnets running on infected Raspberry 
Pis involve the collection of network traffic, categorized by the 
number of flows for each specific type, within a defined time 
interval. 
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Raspberry PI (Infected) Malicious traffic type (5 second flow) 

Botnet 
Capture Duration 

(Hrs) 
Scan C&C DDoS Attack File Download 

Mirai 24 10114 11816 234 10000 11 

Linux Mirai 24 0 6480 55339 0 0 

Linux Hajime 24 953 0 0 0 0 

Okiru 24 0 15688 0 0 0 

Hakai 24 0 
8222

0 
0 0 0 

Trojan 8 0 3 0 0 3 

Torii 24 0 16291 0 0 0 

Muhstik 36 147026 4020 0 0 0 

Hide and Seek 112 571264 8 0 0 0 

Kenjiro 24 0 0 20000 0 0 

Gagfyt 24 0 0 20000 0 0 

IRCbot 7 248880 0 0 0 0 

 
 Our anomaly detection model, which relies on machine 
learning algorithms, is positioned between the switch 
connecting the IoT devices and the router (gateway). It is 
designed to identify five distinct types of flows associated with 
malicious activities. These flows represent the communication 
patterns between various servers, Raspberry Pis, and the three 
IoT devices: 
 

  - C&C: This type indicates that the infected device is 
connected to a command and control server. 

  - DDoS: It signifies an ongoing distributed denial-of-service 
(DDoS) attack being executed by the infected device. 

  - Attack: This label indicates that the infected device is 
launching a specific type of attack towards another host, such 
as brute-forcing a Telnet connection or injecting commands into 
the header of a GET request. 

  - FileDownload: It suggests that a file is being downloaded 
onto the infected device. However, we did not utilize this type 
of traffic for classifier evaluation due to its limited occurrence. 
- Scan: This flow indicates that connections are being used 
to conduct horizontal port scanning, gathering information for 
potential further attacks. 
 
Table 3: The captured network traffic from the non-infected real 
IoT devices 

 

Real IoTs Capture Duration (Hrs) Traffic (Flow Number) 

Amazon Echo 5.4 7682 

Philips Hue Bridge 24 78293 

Somfy diirlock 1.4 4424 
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   By analyzing the network traffic and classifying it based on 

these flow types, our model can effectively detect anomalous 
behavior and identify potential security threats in the IoT 
network. 

   Figure 4 illustrates the experimental environment topology 
used in our approach to simulate the detection of malicious 
botnet traffic from the IoT-23 dataset. The network 
configuration includes a botmaster machine and three servers. 
The botmaster machine serves as the controller, interacting 
with the command and control (C&C) server to monitor 
potential new victims and the botnet's current status through 
communication with the report server.  
 Additionally, the botmaster can initiate attacks on the 
target server by issuing commands via the C&C server. The 
loader server plays a role in connecting to the target device and 
instructing it to download and execute the appropriate binary 
version of the botnet upon receiving the infection command 
from the botmaster. To capture the data flow within the 
network, the sniffer machine is utilized. Our detection system 
analyzes this flow and generates alerts if any anomalies are 
detected, providing valuable information to the IoT user. 
 

 
                                 

Figure 4. The network topology of the experimental 
environment 
 

                                  3.3 Data Preprocessing 
Data preprocessing is a crucial technique employed to convert 
raw data into a clean and usable dataset. When data is collected 
from different sources, it is often in an unstructured format, 
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unsuitable for analysis purposes. Therefore, preprocessing 
steps are performed to transform the data into a refined and 
organized format, ensuring its suitability for subsequent 
machine learning tasks. In our approach, the data preprocessing 
phase comprises four key steps. Firstly, we extract relevant 
features using Tranalyzer. Secondly, we encode categorical data 
to enable proper representation and analysis. Next, 
standardization is applied to normalize the data and bring it into 
a consistent scale. Finally, attribute selection is performed using 
filters based on attribute importance measures. By executing 
these preprocessing steps, we ensure that the data is 
transformed into a clean and manageable dataset, facilitating 
accurate analysis and effective machine learning outcomes. 
 
3.3.1 Feature Extraction 
Feature extraction is a fundamental process in analyzing 
network traffic, and one common approach is to use flow 
extractors. In our approach, we employed the Tranalyzer tool 
for this purpose. Tranalyzer is a lightweight and efficient packet 
analyzer and flow generator designed for both practitioners and 
researchers. It extends the capabilities of Cisco NetFlow and 
assists analysts in handling large volumes of packets. By 
capturing live IP traces from Ethernet interfaces or pcap files, 
Tranalyzer enables the exploration of flows and individual 
packets of interest. It can quickly generate reduced pcap files 
for in-depth analysis using its text-based packet mode or by 
loading them into tools like tcpdump or Wireshark. 
Implemented in C and built on the libpcap library, Tranalyzer 
offers the flexibility to extract key parameters and statistics 
from captured IP traces. 
 

 
 
                                   Figure 5. An example of flows exported by Tranalyzer [32]. 
 

3.3.2 Encoding Categorical Data 
 Tranalyzer generates a set of 62 attributes, comprising both 

numerical and categorical variables. Numerical attributes, such 
as flow duration, packet count, and Round Trip Time (RTT), have 
inherent quantitative values that can be directly utilized by 
machine learning algorithms without any preprocessing. 

  On the other hand, categorical attributes contain non-
quantitative values known as categories. For example, the 
"tcpAnomaly" attribute denotes anomalies present in a packet 
and represents a categorical variable with multiple modalities 
like SYN-FIN flags, which should not coexist within the same 



Journal of Namibian Studies, 35 (2023): 254-282   ISSN: 2197-5523 (online) 
 
 

Special Issue on Engineering, Technology and Sciences 

 

271  

packet. Incorporating categorical variables into the learning 
process can introduce complexity since most machine learning 
algorithms operate on numerical input. Therefore, it becomes 
necessary to find a suitable method for encoding these 
categorical modalities into numerical representations. 

  To address this, we employed the "get_dummies" function 
from the Pandas library in Python for encoding our categorical 
data. This widely-used function simplifies the transformation of 
categorical variables into numerical ones. It operates by 
creating K indicator variables, where K represents the number 
of modalities. Each indicator variable is a binary vector with a 
value of 1 for the corresponding modality and 0 for others. By 
replacing the original categorical variable with these indicator 
variables, we enable machine learning algorithms to effectively 
process the data. 
 However, it's important to note that using the 
"get_dummies" approach may result in an increased number of 
variables, especially when dealing with a large number of 
modalities (e.g., more than 100). This can lead to a larger 
dataset, occupying more memory and potentially affecting the 
performance of machine learning algorithms during processing. 
 
3.4 Standardization and Attribute Selection 

 Standardization is a common requirement for many machine 
learning estimators because they can perform poorly if 
individual features do not resemble approximately normally 
distributed data. In our approach, we utilized the Scikit-Learn 
library in Python to standardize the data, which involves 
removing the mean and scaling the variance to a unit value. For 
instance, many learning algorithms rely on the assumption that 
all features are centered around zero and have a similar 
variance. However, if a particular feature has a much larger 
variance compared to others, it can overshadow the objective 
function and hinder the estimator's ability to properly learn 
from other features as intended. 

  To address this issue, we apply standardization to ensure 
that features have comparable scales and are centered around 
zero. By subtracting the mean and dividing by the standard 
deviation, we transform the features to have a mean of zero and 
a variance of one. This process allows machine learning 
algorithms to effectively learn from all features without any 
single feature dominating the learning process. By utilizing the 
Scikit-Learn library for data standardization, we guarantee that 
our features are appropriately scaled, preventing any potential 
biases or dominance issues that may arise from features with 
varying scales or variances. In order to perform attribute 
selection on the dataset, we opted for a filter-based technique 
implemented in Matlab, as described in [33]. This approach 
utilizes a set of attribute importance measures that generate 
various rankings. These rankings are then combined to select 
the subset of attributes with the highest rankings. Furthermore, 
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the overall importance of an attribute is enhanced when the 
rankings produced by each metric are merged. It is important to 
note that attribute selection through filtering retains a subset of 
the original features, unlike feature extraction which creates 
new, potentially less interpretable features. The ranking list for 
each attribute is obtained by applying metrics specifically 
designed for single-class variable selection. These metrics assign 
a specific order to the attributes in the dataset, and 
subsequently, they are aggregated using a suitable technique. 

  The following importance measures, detailed in [33], were 
employed in this work: 

 1- Spectral Score (SPEC): This measure evaluates the 
coherence of features with the structure of a graph constructed 
based on the similarity matrix of labeled and unlabeled data. 
Features that align well with the graph's structure, indicating 
consistent and similar positive data, receive higher scores. 

 2- Information Score (IS): This metric assesses the relevance 
of each attribute by measuring the decrease in entropy when 
the attribute is removed from the dataset. If the removal leads 
to higher similarity among the remaining data, the attribute is 
considered important. 

 3- Pearson Correlation (PC): This measure quantifies the 
degree of association between each attribute and others. It 
checks for linear dependence among attributes and favors 
lower values, indicating weaker correlation, to retain 
uncorrelated attributes. 

 4- Intra-Class Distance (ICD): This metric quantifies the 
distance of each attribute's samples from the centroid of their 
respective class. Attributes that result in smaller distance 
reductions are considered better as they are closer to the data. 

 5- Interquartile Range (IQR): This measure takes into account 
the distribution of feature values across their interquartile 
range. Attributes with values that tend to be more concentrated 
are considered more representative of the dataset. 
 The implementation details for these attribute importance 
measures can be found in [34]. After obtaining the attribute 
ranking lists along with their corresponding aggregation values 
using Matlab, we sorted the attributes in ascending order based 
on their aggregation values. We selected the top 12 attributes 
that satisfied two conditions: reaching a minimum number of 
attributes and either maintaining or improving the performance 
of the classifier. We also accepted a slight degradation in 
performance, if necessary. The resulting 12 selected attributes, 
along with their respective Rank values, are listed below and 
visualized in Figure 6. 
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Fig. 6. The 12 attributes selected and sorted according to their 
Rank value 
 
The correlation matrix, displayed in Figure 7, provides insights 
into the relationships between attributes. Attributes with high 
correlation exhibit stronger linear dependence, indicating that 
they have a similar impact on the dependent variable. However, 
the 12 selected attributes demonstrate a correlation of less than 
50%, indicating a low level of dependence between them. This 
finding reinforces the reliability of our attribute selection 
process, as it ensures that the chosen attributes offer distinct 
and independent information for analysis. 
 

 
Fig. 7. Correlation Matrix of the 12 Selected Attributes. 
 
4. Experimental Validation and Performance Analysis 
 
4.1 Performance Evaluation 

 In this section, we describe the implementation of our approach 
for testing and evaluate its performance. We utilized Python 3 
for implementing the approach using the free cloud service 
Google Colab (Colaboratory), which is based on Jupyter 
Notebook and designed for machine learning research and 
training. Google Colab provides access to various libraries and 
services offered by Google. The scripts created in Colab are 
automatically saved on Google Drive, allowing for easy sharing 
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of the scripts. 
 To ensure data persistence and availability, we uploaded 
our database containing the required CSV files for training and 
prediction to Google Drive. This way, we could read the data 
from this location whenever needed, preventing data loss upon 
disconnection from the service. The single-class classifiers were 
implemented using the TensorFlow library in Python. For 
evaluating the performance of our proposed approach, we 
employed six performance metrics. These metrics are 
computed based on four measures: true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). 
 

  The performance metrics used in our evaluation are as 
follows: 
- Accuracy: It measures the ratio of correctly classified 
abnormal and normal instances to the total number of 
instances. Accuracy provides an overall indication of how well 
the model performs, but it does not provide detailed insights 
into specific applications. 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑭𝑷+ 𝑭𝑵+ 𝑻𝑵)
 

 
- Precision: It represents the ratio of correctly classified 
abnormal instances to the total number of instances classified 
as abnormal. Precision indicates how often the model is correct 
when it predicts positive data. It should be noted that precision 
is different from accuracy. 
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)
 

 
- Recall: Recall measures the ratio of correctly classified 
abnormal instances to the total number of actual abnormal 
instances. It signifies the model's ability to identify all relevant 
instances correctly. 
 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)
 

 
- Specificity: Specificity is the ratio of true negatives to the 
total number of negatives in the dataset. It measures the 
model's ability to correctly identify true negatives. 
 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒕𝒚 =
𝑻𝑵

(𝑻𝑵 + 𝑭𝑷)
 

 
-         F1Score: The F1 score is a measure of the test's precision, 
considering both precision and recall to calculate the score. It 
is the harmonic mean of precision and recall, with the best 
value being 1. 
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𝑭𝟏𝑺𝒄𝒐𝒓𝒆 =
𝟐 ∗ (𝑹𝒆𝒄𝒂𝒍𝒍 ∗ 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)

(𝑹𝒆𝒄𝒂𝒍𝒍 + 𝑭𝑷𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)
 

 
- Receiver Operating Characteristic (ROC): The ROC curve 
represents the trade-off between true positive rate and false 
positive rate. The area under the ROC curve (AUC) is a 
performance measure indicating the model's ability to 
distinguish between classes and avoid false classifications 

                                  References 
 By implementing our approach in this manner and 
evaluating its performance using these metrics, we were able to 
assess its effectiveness and gain insights into its classification 
and prediction capabilities. 
 
4.2 Results and Discussion 
This section presents the findings and analysis obtained from 
the implementation of the algorithm described in Chapter 3. 
The performance of the classification model was evaluated 
using various metrics such as Accuracy, Precision, Recall, F1 
Score, Specificity, and average AUC. The dataset used for 
training consisted of 70% legitimate traffic, while 30% was used 
for testing, focusing on binary classification. 
 

       Table 4: Optimized Hyperparameters 

Hyperparameters Value 

Activation function (relu, relu, relu, softmax) 

Hidden Layers (Nb attribut, 8, 3, 8, Nb attribut) 

Threshold 8 

Loss Mean_squared_error 

Optimizer Adam 

 
  Two experiments were conducted to assess the model's 

performance. In the first experiment, the model was trained 
using legitimate traffic from real IoT devices and tested with 
different types of malicious traffic generated by botnets running 
on Raspberry Pi devices (Scan, C&C, DDoS, Attack). The 
objective was to evaluate the model's ability to differentiate 
between legitimate and malicious traffic, as well as its 
effectiveness in detecting different types of attacks. 
 The second experiment aimed to evaluate the final model's 
capability in detecting zero-day attacks in IoT networks with 
minimal false positives. The normal class included all traffic from 
real IoT devices, while the abnormal class consisted of simulated 
malicious traffic from the IOT-23 dataset. The results are 
presented in tables 5, 6, and 7 and figures 8, 9, and 10. Various 
techniques were applied to improve the detection 
performance, including hyperparameter tuning for the 
AutoEncoder, feature selection, and optimization of runtime. 
The specific hyperparameters used are detailed in Table 4. 
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                                 Table 5:  Somfy IoT Lock 

Malicious traffic 
type 

Recall Accuracy F1score Precision     ROC Specificity 

Scan 97,17% 99,04% 98,83% 97,17% 99,04% 99,80% 

DDos 81,12% 86,11% 84,56% 81,12% 86,11% 96,91% 

C&C 91,23% 95,11% 92,22% 91,23% 95,11% 94,45% 

Attack 97,70% 99,22% 98,57% 97,70% 99,22% 99,92% 

 
 
Table 5 displays the metrics obtained for the classifier trained 
on the Somfy dorlock traffic. The F1 Score, representing the 
balance between precision and recall, was used for result 
comparison. The classifier successfully distinguished between 
legitimate and malicious traffic, achieving an F1 Score above 
85%. 
 

 
Figure 8. IoT Somfy dorlock traffic 
 
 

Table 6:  IoT Philips Hue Bridge 

Malicious traffic 
type 

Recall Accuracy F1score Precision     ROC Specificity 

Scan 83,11% 98,97% 88,11% 83,11% 99,04% 98,83% 

DDos 71,98% 74,03% 75,13% 71,98% 86,11% 74,11% 

C&C 76,04% 80,95% 79,94% 76,04% 95,11% 81,13% 

Attack 98,12% 96,03% 98,15% 98,12% 99,22% 96,17% 

 
  The results of the classifier based on the Philips Hue Bridge 

traffic are shown in Table 6. The performance was slightly lower 
compared to the first IoT device, indicating some dependency 
between legitimate and malicious traffic. The DDoS and C&C 
communications showed F1 scores of 74.48% and 80.16%, 
respectively. 
 Similar results were obtained for the classifier trained on 
Amazon Echo traffic, as presented in Table 7. There was a slight 
decline in detecting DDoS and C&C traffic, highlighting the 
challenge of differentiating these types of attacks from 
legitimate traffic. However, the classifier performed well in 
detecting Attack and Scan traffic, achieving F1 scores exceeding 
97% and 87%, respectively. 
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Fig. 9. IoT Philips Hue Bridge traffic 

Table 7: Bridge IoT Amazon Echo 

Malicious traffic 
type 

Recall Accuracy F1score Precision     ROC Specificity 

Scan 97,89% 86,03% 86,89% 97,89% 86,03% 72,95% 

DDos 71,13% 66,25% 88,04% 71,13% 66,25% 72,95% 

C&C 57,12% 78,11% 72,31% 57,12% 78,11% 72,95% 

Attack 95,39% 98,13% 98,06% 95,39% 98,13% 72,95% 

 
  The second experiment's results, shown in Table 8, 

demonstrated the model's ability to establish a common profile 
among the legitimate traffic of the three IoT devices, leading to 
improved precision in detecting anomalies. 
Additionally, a feature selection method was applied, resulting 
in a slight degradation in performance but with a significant 
improvement in runtime. 
 

 
 
Fig. 10. IoT Amazon Echo traffic 
 

Table 8: Learning IOT traffic with and without selection of attributes 

Malicious traffic 
type 

Recall Accuracy F1score Precision     ROC Specificity 

Without Selection  97,44% 95.9% 96 96,89% 
96,03

% 
94,95% 

With Selection 99.2% 92.4% 92.8% 98,83% 93,25% 87% 

 



Journal of Namibian Studies, 35 (2023): 254-282   ISSN: 2197-5523 (online) 
 
 

Special Issue on Engineering, Technology and Sciences 

 

278  

 
 
Comparing our AutoEncoder approach with supervised machine 
learning algorithms on the IOT-23 dataset, our deep learning-
based one-class approach showed promising results. Supervised 
classifiers often struggle with detecting new attacks due to the 
need for labeled training data. In contrast, our AutoEncoder 
approach outperformed the linear SVM classifier used in 
previous work [35]. 
 

Table 9: Comparison table of AutoEncoder and linear SVM results 

Classifier Recall Accuracy F1score Precision     

Linear SVM 98% 92% 90% 84% 

Our Approach 99% 94% 92% 98% 

 
 Table 9 provides a performance comparison between our 
AutoEncoder approach and linear SVM. In conclusion, this 
section presents a detailed analysis of the results obtained from 
our approach and identifies areas for further improvement. The 
comparison with other approaches demonstrates the 
effectiveness of our deep learning-based one-class approach in 
detecting anomalies in IoT networks. 
 
5. Conclusion 

 This research aimed to develop a botnet detection approach for 
Internet of Things (IoT) networks without impacting their 
normal functioning. Botnets are collections of compromised IoT 
devices that are controlled remotely to launch cyberattacks. The 
researcher began by studying IoT network vulnerabilities and 
common attacks to understand the security challenges. 
Network traffic analysis was identified as a promising method 
since botnets can be identified by anomalies in device behavior 
and traffic patterns. Existing literature on botnet detection 
techniques for IoT was reviewed to inform their approach. 
Network traffic would be analyzed using Python tools due to 
their powerful data processing capabilities. An unsupervised 
deep learning technique called one-class classification was 
selected to model each device's regular traffic profile without 
labeled malware samples. It detects abnormal deviations from 
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normal behavior. An autoencoder-based one-class classifier was 
implemented and evaluated on the IOT-23 dataset. The 
experiments demonstrated it can accurately pinpoint malicious 
traffic with a 93% F1 score. Feature selection was also applied 
to reduce training/prediction time while maintaining 
performance. 

  In summary, the researcher developed and tested a botnet 
detection solution for IoT networks focused on network traffic 
analysis and one-class deep learning. It aimed to protect these 
networks from botnet infections without disrupting normal 
device operation. 
 This research successfully achieved its original objective of 
developing a method to detect botnets targeting IoT networks, 
thereby enhancing security for connected devices. However, 
further refining and expanding the work maintains potential for 
significant progress. One avenue is more rigorously validating 
the proposed solution across more diverse IoT environments 
and botnet variants. This could involve generating custom 
detection models leveraging different device types' legitimate 
traffic patterns to test generalizability. Evaluating performance 
when applied to new network conditions would provide 
invaluable insights. Additionally, the autoencoder performed 
strongly on scan and attack traffic, indicating promise for 
identifying compromised devices very early on. Detecting 
infections during initial targeting and infiltration offers 
opportunities to prevent many systems from becoming bots. 
Continued research focusing specifically on detection 
approaches suited for discriminating abnormal behaviors 
exhibited uniquely by IoT systems under initial botnet 
development could offer substantial value. Timely recognition 
of emerging threats aims to curb the scalability and impacts of 
these network-abusing programs. While the objectives were 
met, assessing cross-domain applicability and applying learnings 
to detecting botnets during their genesis represent especially 
worthwhile future work avenues. Ongoing experimentation and 
algorithm refinement applying these concepts maintains 
potential to significantly enhance capabilities to safeguard 
connected infrastructures. Overall, refining generalizability 
testing and expounding detection during early compromise 
stages represent pathways for impactful research expansions 
building on foundations established. 
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