
Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

254

 Deep Iot: A Deep Learning Model For

Anomaly And Botnet Detection In Iot

Networks

 Mounira Tarhouni1, Lamaa Sellami2, Bechir Alaya*3,
 and Pascal Lorenz4

 1Higher Institute of Computer Science and
 Multimedia Gabes, Gabes University,
 Tunisia.

 2Numerical Control of Industrial Processes
 Laboratory (CONPRIS), National School of

 Engineers of Gabes, Gabes University,
Tunisia.

 3Department of Management Information
 Systems and Production Management,

 College of Business and Economics,
 Qassim University, 6633, Buraidah, 51452,

Saudi Arabia.
 4Université de Haute-Alsace (UHA), MIPS,

France.

Abstract

The Internet of Things (IoT) is currently transforming the world

by connecting physical objects to the Internet. However, as the

number of connected devices and the growth of IoT continue to

rise, new network security threats are emerging due to

vulnerabilities in these devices. One prevalent threat is the

presence of bot malwares, which exploit vulnerable IoT devices

to launch cyber attacks. To address these risks, there is a need for

novel methods to detect IoT botnet networks. In this study, we

propose a network intrusion detection model that utilizes deep

learning, specifically an Autoencoder, to identify malicious

botnet traffic. Our model takes a one-class classification

approach, focusing on modeling the legitimate behavior of

devices within the network to detect anomalies without

requiring manual labeling. To analyze device behavior, our

solution generates network flows from traffic data and selects

relevant flow statistics. We evaluated our approach using the

IOT-23 dataset, which includes captures of botnets executed on

IoT devices as well as legitimate IoT device traffic. The results

demonstrate that our detection model achieves a high predictive

performance in identifying different types of botnets, with an

impressive F1-score of 93%

Keywords: Internet of Things, Botnets, anomaly detection,

Autoencoder, IOT-23.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

255

1. Introduction
The Internet has greatly evolved over recent years, allowing an

increasing number of objects to interact with each other or with

ourselves. Objects have different sizes, capacities, processing

and computing power and support different types of

applications, thus contributing to the emergence of the Internet

of Things. The term "Internet of Things" or IoT first appeared in

1999 in a speech by British engineer Kevin Ashton [1]. This

technology mainly consists of connecting a very large number of

everyday objects (phone, watch, surveillance camera, etc.) to

the Internet network in order to offer services, through the

integration of sensors, actuators and communication

capabilities, thus linking the physical world to the virtual world

[2]. In fact, IoT has introduced technology into daily life through

applications in various fields such as health, smart cities,

transportation. Due to advanced Internet technology, IoT

applications have become a crucial topic. As manufacturers of

connected objects accelerate innovation, more and more

malicious activities involving such objects, or even cyber-attacks

targeting them, are occurring. As these devices are not as secure

as other computing devices, but also participate in security-

sensitive tasks, they represent a perfect target for attackers.

Among several threats, botnets like Mirai are those that can

most benefit from IoT security weaknesses. Malicious botnets

are compromised device networks called "Bots" that are

remotely controlled by a human operator called the

"Botmaster" under a common command and control (C&C)

infrastructure. They are used to distribute commands to Bots for

malicious activities such as distributed denial of service (DDoS)

attacks, spamming, and phishing [3].

Many existing security solutions focus narrowly on specific

protocols or device characteristics. Additionally, lack of updates

from manufacturers leaves devices vulnerable over time. Given

these limitations, we propose addressing the important issue of

botnet detection in IoT networks [4].

Our work aims to protect IoT networks from botnets

without impacting performance or relying on manufacturers.

Most solutions are tied to particular protocols or hardware.

Instead, we seek to identify botnet activity through analysis of

network behavior across devices. By detecting threats at the

traffic level, rather than the level of individual protocols or

devices, our approach can provide security agnostically.

Without timely patches from makers, vulnerabilities persist. We

aim to strengthen protection independent of vendor support

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

256

through direct examination of inter-device interactions. Rather

than confining solutions to constrained parameters, we aim to

recognize botnet command and control infrastructure as it

functions within the larger network environment. By taking a

holistic view and concentrating on dynamic traffic indicators

over static device traits, we hope to close gaps left by targeted

or outdated solutions. Our overarching goal is fortifying IoT

network security and user security against sophisticated threats

like botnets through minimally intrusive traffic analysis. This

could help counter a significant risk in a protocol- and vendor-

agnostic manner.

Given the promising work and challenges related to IoT

networks, the main objective of this work is to secure and

protect IoT networks from various malicious botnet activities

without affecting network performance. Most of the botnet

detection mechanisms proposed in the literature for IoT

networks typically address only a few botnets and are applicable

to only a specific protocol, and thus are based solely on

simulated networks. As a result, a botnet network detection

system tested on real traffic data from the IoT-23 dataset is

needed, which can detect all malicious activities caused by

botnets. Specifically, we aim to develop and evaluate a botnet

detection system capable of:

- Identifying a wide range of botnet threats using

real-world IoT traffic data, rather than limiting to specific

botnets or simulated scenarios.

- Operating effectively across different IoT

communication protocols, to provide protocol-agnostic

security.

- Protecting network performance by detecting

botnet command and control traffic patterns without deep

packet inspection of individual device communications.

The goal is to provide a more robust and broadly applicable

solution for securing IoT networks against real botnet threats

represented in the IoT-23 dataset, without compromising

usability or network efficiency. Addressing limitations of existing

research will help strengthen cybersecurity for this important

domain.

This paper is divided into five main sections. Section 2

provides an in-depth examination of the current state of the

Internet of Things (IoT), including its definition, architectural

framework, application areas, and underlying technologies. This

section also evaluates IoT security concerns, exploring

vulnerabilities in connected devices and threats posed by

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

257

botnets. Section 3 introduces our proposed approach for

detecting botnets within IoT networks. This includes an

overview of the dataset utilized as well as a detailed breakdown

of the preprocessing, feature extraction, and classifier

generation steps involved. Section 4 then presents the

experimental findings from applying our methodology.

Performance results are reported to demonstrate the

effectiveness of the botnet detection system. The final section

summarizes the key contributions and conclusions of this work.

It also identifies potential avenues for future improvement and

extensions to further advance this research area

2. Related Work

Recent technological advancements in the fields of electronics,

communications, and Internet development, coupled with the

increasing proliferation of mobile devices in our daily lives, have

given rise to the Internet of Things (IoT). This new era of the

Internet is characterized by networks composed of thousands,

or even millions, of objects, forming dense and large-scale

networks. In this section, we introduce the concept of IoT,

define its scope, examine its architecture, applications, and

underlying technologies, while also scrutinizing the threats and

vulnerabilities that loom over the IoT. We place a particular

focus on botnets and cyberattacks targeting these networks,

while reviewing the countermeasures proposed in the literature

to safeguard IoT networks against a variety of attacks aimed at

disrupting their optimal functioning. The term "Internet of

Things" [5] refers to an increasingly extensive network of

physical objects connected to the Internet, identified and

recognized, just like all other conventional devices we use daily,

such as computers, tablets, smartphones, etc. Another

definition of the Internet of Things, as per [6], is a dynamic

global network infrastructure with self-configuring capabilities

based on interoperable communication standards and

protocols, where physical and virtual "objects" have identities,

physical attributes, virtual personalities, and intelligent

interfaces, and they are seamlessly integrated into the

information network. It represents the world of interconnected

"objects," where humans interact with devices, and devices

interact with each other (M2M) [7]. The Internet of Things (IoT)

represents the new Industrial Revolution, and a critical decision

in this realm is the selection of the communication network (or

networks) that will facilitate communication among real-world

objects, including machines, equipment, and installations. There

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

258

are numerous options available, such as machine-to-machine

(M2M), Wi-Fi, Sigfox, ZigBee, among others [8]. There are

several ways to architect an Internet of Things (IoT) system. One

of the most common architectures divides IoT into three or five

layers, as described by [9]. Within an Internet of Things (IoT)

system, data is gathered through physical IoT devices in the

Perception layer, transmitted for processing in the Transport

layer, subjected to analysis employing machine learning and

artificial intelligence in the Processing layer, supervised and

managed via rule sets and service level agreements in the

Application layer, and eventually translated into business

intelligence to inform decision-making in the Business layer.

 2.1 Vulnerabilities in the Internet of Things (IoT)

IoT has a broad range of application domains, and in their

article, Gubbi et al. [10] categorized IoT applications into four

areas: 1) personal domain, 2) transportation domain, 3)

environment, and 4) infrastructure and public services. A

schematic representation of these domains is illustrated in

Figure 1. Examples of these domains include industry,

healthcare, education, and research. However, in the future, the

concept of IoT is expected to be pervasive, available anywhere,

anytime, and accessible to everyone.

Since most Internet of Things (IoT) devices are designed for

simple tasks, they lack strong security measures, making them

vulnerable to weak security standards, and malicious actors

take advantage of these vulnerabilities to attempt some of the

common IoT attacks, as mentioned by [11]. Many mobile

applications designed to control and monitor devices over the

network do not support modern security standards such as

Secure Socket Layer (SSL) for encrypting communications [12].

Additionally, many IoT devices typically do not allow the

resetting of default credentials or the installation of software

updates, resulting in an inability to address vulnerabilities. For

example, in October 2017, a weakness was revealed in the

widely used WPA2 encryption protocol in most modern wireless

networks [13].

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

259

Figure 1: Application Domains of the Internet of Things [10].

 Consequently, IoT is becoming increasingly popular as a
powerful tool for cybercriminals. There are classifications to list
IoT device vulnerabilities [14]. For instance, the Open Web
Application Security Project (OWASP) Internet of Things project
is designed to help manufacturers, developers, and consumers
better understand security issues associated with IoT. OWASP
provides a classification that identifies key attack surfaces,
including memory, network, web interface, and more. Table 1
lists the most common IoT vulnerabilities identified by OWASP.
A security report on IoT devices by HP in July 2014 found an
average of 25 vulnerabilities per device. For instance, 80% of
devices did not require sufficiently complex and lengthy
passwords, 70% did not encrypt local and remote traffic
communications, and 60% contained vulnerable user interfaces
and/or firmware [15].

 Table 1: Common Internet of Things Vulnerabilities [15].

Vulnerability Examples

Insecure web/mobile/cloud
interface

- Inability to change default usernames and passwords :
Devices or systems using default credentials do not allow
users to change them, exposing them to security risks.

- Weak passwords: The use of simple, easily guessable, or
commonly used passwords makes accounts vulnerable to
brute force attacks.

- Lack of robust password recovery mechanisms: The
absence of secure password recovery processes can allow
unauthorized third parties to reset passwords and gain
access to accounts.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

260

- Exposed credentials: User credentials (username, password)
can be exposed to third parties, facilitating unauthorized
access.

- Lack of account locking: Repeated unsuccessful login
attempts are not blocked, making accounts vulnerable to
brute force attacks.

- Susceptibility to cross-site scripting, cross-site request
forgery, and/or SQL injection: These security vulnerabilities
allow attackers to execute malicious scripts, forge requests,
or inject SQL code to compromise the system or data.

Insufficient
Authentication/Authorization

- Privilege escalation: refers to the unauthorized elevation of
user privileges

- Lack of granular access control: means that the system does
not have fine-grained control over who can access specific
resources or perform particular actions

Insecure network services - Vulnerability to denial of service attacks
- Buffer overflow
- Network ports or services unnecessarily exposed to the

Internet

Lack of transport
encryption/integrity checking

Without transport encryption, data is vulnerable to interception
and tampering during transit, potentially exposing sensitive
information to unauthorized access or modification.

Privacy issues - Collection of unnecessary user data
- Personal data exposed
- Insufficient controls over access to user data
- Lack of data retention limits

Insufficient security
configuration

- Inability to separate administrators from users
- Weak password policies
- No security logging
- Lack of data encryption options
- No user notification of security events

Insecure software/firmware

- Lack of secure update mechanism
- Update unencrypted files
- Update unverified files before uploading
- Insecure update server
- Hard-coded credentials

Poor physical security

- Easy to disassemble device
- Access to software via USB ports
- Removable storage media

Design vulnerabilities, such as weak or non-existent passwords,
can lead to authentication or authorization attacks. For
instance, in the case of Phillips Hue connected bulbs [16], the
authentication password for controlling the lights is limited to
only 6 alphanumeric characters, making it vulnerable to attacks.
The Mirai botnet [17] is a notable example of attacks that
exploit such vulnerabilities, primarily relying on weak or default
passwords [18]. Additionally, Fouladi and Ghanoun [19]
demonstrated a vulnerability in the implementation of the Z-
Wave key exchange protocol. This vulnerability could

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

261

potentially allow an attacker to gain complete control over a Z-
Wave door lock by only knowing the home ID and node of the
target device. These pieces of information can be identified by
monitoring Z-Wave network traffic over a short period due to
the frequent polling of devices in a Z-Wave network. These
examples underscore the importance of addressing design
vulnerabilities and implementing robust security measures to
protect IoT devices and networks from potential security
threats and unauthorized access. Neglecting security measures
by IoT device designers/manufacturers can create
vulnerabilities for other household equipment. Consequently,
the extensive adoption of Universal Plug and Play (UPnP) [20]
within IoT devices becomes susceptible to exploitation for
launching attacks. UPnP, a protocol used to open ports on
network gateways, grants external individuals control over the
devices. This feature is exploited by botnets, which leverage
Telnet or SSH to connect to and infect IoT devices.

 The implementation of traditional computer security
mechanisms in IoT devices is challenging due to their limited
computational power [18]. Vulnerabilities, such as buffer
overflow in the Bluetooth protocol used by popular IoT devices
like Arduino Yun, have been exploited by researchers [21]. The
low power of IoT devices prevents the application of memory
protection techniques like ASLR [18]. Furthermore, a
vulnerability in the Bluetooth Low Energy (BLE) protocol has
been discovered, compromising the confidentiality of key
exchange due to potential brute-force attacks [22].

2.2 Botnets in IoT

 Botnets are networks of compromised devices controlled by
malicious software, allowing cybercriminals to gain
unauthorized access and control over connected devices by
employing specialized Trojan horses, resulting in a global
network of compromised devices, primarily targeting unsecured
IoT devices, with the Mirai botnet being the largest and most
notable example [23][24].
 The lifecycle of a bot is illustrated in Figure 2, depicting the
typical creation of a botnet in five phases [25][24]: initial
infection, secondary injection, connection, malicious command
and control, and update and maintenance. In the initial infection
phase, the attacker scans a target subnet for known
vulnerabilities and infects victim machines using various
exploitation methods. In the secondary injection phase,
infected hosts execute a shell-code script to retrieve the actual
bot binary and install it on the target machine, turning it into a
"Zombie" that automatically runs the malicious code upon
reboot. The connection phase involves establishing a command
and control (C&C) channel, connecting the zombie to it, and
integrating it into the attacker's botnet army.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

262

Figure 2. Lifecycle of a bot

The malicious command and control phase is where the botnet's
actual commanding and controlling activities take place, with
the botmaster using the C&C channel to issue commands to the
bot army, which receives and executes them. The maintenance
and update phase focuses on keeping the bots active and
updated, with botmasters employing dynamic DNS (DDNS) to
maintain the botnets' invisibility and portability, allowing
frequent server location changes and updates. Various IoT
botnets that have undergone testing for botnet detection in IoT
networks. These examples shed light on the different types of
botnets, their attack strategies, and the specific vulnerabilities
they exploit. One such botnet is Mirai, which infects IoT devices
and serves a dual purpose of spreading the infection to poorly
configured devices and launching DDoS attacks on a targeted
server. Mirai establishes communication with a command and
control (C&C) server through the Tor network and utilizes a
loader to distribute executable files designed for various
platforms. Initially, Mirai scans random public IP addresses by
targeting TCP ports 23 or 2323. Another botnet called Torii
derives its name from its utilization of Tor exit nodes. Torii
employs telnet attacks and focuses on extracting sensitive
information. It employs a modular architecture that enables it
to retrieve and execute additional commands and binaries. Torii
communicates with its C&C servers via TCP port 443, utilizing
encryption to mimic HTTPS traffic. Okiru, also known as Satori,
is a variant of Mirai that exploits a previously unknown
vulnerability (CVE-2017-17215) present in Huawei HG532
devices. Okiru injects malicious payloads and inundates its
targets with manually crafted UDP or TCP packets. Hajime, on
the other hand, is a highly sophisticated and flexible IoT worm
that establishes a large peer-to-peer (P2P) botnet. It exploits
Mirai's infection methods and employs brute force attacks.
Hajime possesses the ability to self-update and swiftly expand
its botnet by incorporating additional features. It employs SYN

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

263

scanning to discover new victims, targeting TCP ports 23
(Telnet) and 5358 (WSDAPI). Other notable examples include
Hide and Seek, which employs complex and decentralized
communication techniques while utilizing anti-falsification
methods. It spreads like a worm and can perform web
exploitation similar to the Reaper botnet. Muhstik leverages
web application exploits to compromise IoT devices, using IRC
for control and commands. It primarily targets home routers like
GPON, DDWRT, Tomato routers, and executes attacks in
multiple stages involving payload delivery, downloading an
XMRig miner, and incorporating an analysis module to expand
the botnet.
 Gagfyt targets vulnerable IoT devices such as Huawei and
Realtek routers, as well as ASUS devices. It exploits existing
vulnerabilities to convert these devices into bots for future
DDoS attacks. Gagfyt also reuses certain code modules from
Mirai. IRCbot, also known as "Chuck Norris," focuses on
vulnerable routers and DSL modems to propagate a worm-like
infection. It employs Internet Relay Chat (IRC) for
communication with a bot master, utilizing removable drives
and instant messaging programs for spreading purposes. Lastly,
Hakai, initially based on Qbot, enhances its capabilities by
exploiting CVE-2017-17215, which impacts Huawei HG352
routers, Realtek routers, and other vulnerable IoT devices. It
incorporates an efficient Telnet scanner to target devices with
default or weak passwords.

2.3 Intelligent Intrusion Detection Systems (IDS) in IoT

 Research on intelligent Intrusion Detection Systems (IDS) in IoT
environments is currently limited compared to traditional
networks. The majority of studies focus on simulated networks
using the 6LoWPAN protocol, which may hinder their
applicability to other IoT protocols.

 Botnet detection approaches in IoT environments can be
classified into three categories: host-based detection, network-
based detection, and hybrid detection. In a host-based
detection approach [26], a method employs a One-Class
Support Vector Machine (OSVM) model trained with host-based
data, such as CPU usage, memory, electrical potential
difference, and CPU temperature. Although this approach
demonstrates minimal resource consumption, it has only been
tested on two types of IoT devices and with a limited set of
features.

 Another IDS called SVELTE [27] operates on IPv6 networks
and utilizes a server module to establish network topology and
safeguard sensor systems against internet-based attacks.
Meanwhile, the client module provides an IPv6 network
topology mapper and detects lost packets. This approach has
been evaluated using a software simulator but requires
software modification for sensors, which can be challenging for
large-scale IoT networks. Nomm and Bahsi [28] propose an

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

264

unsupervised learning model for botnet detection. Their model
employs one-class classification using methods like Local Outlier
Factor (LOF), One-Class SVM, and Isolation Forest (IF) to identify
legitimate traffic. However, this method may have a lower
detection rate due to the difficulty of generating normal traffic
for certain IoT devices. Manzoor and Morgan [29] develop an
anomaly-based NIDS that uses a Support Vector Machine (SVM)
to predict network traffic as either normal or an attack.
Although this approach achieves a precision of 73% when tested
against new attacks, it does not address the issue of false
alarms. Zeng et al. [30] propose a hybrid detection approach
that combines both host-based and network-based detection.
They analyze nine features for host analysis and seventeen
features for network analysis. This approach demonstrates
effectiveness against IRC, P2P, and HTTP botnets. However, the
analysis process may be time-consuming due to network
violations in P2P bots.
 In summary, the development of botnet detection
approaches in IoT environments is still ongoing. Network-based
approaches appear preferable due to resource limitations and
the proliferation of IoT devices. Nevertheless, challenges
persist, such as software modification for sensors and the
management of false alarms. Further research is necessary to
develop efficient and tailored IDS for IoT environments.

3. Proposed Approach

In this section, we introduce our approach to detect botnets in
IoT networks while preserving their functionality. We address
the need for easy-to-use IoT systems that shield users from the
underlying technological complexity and protect against
potential threats. Previous discussions highlighted the risks
associated with IoT devices connected to the internet and
exchanging data, particularly the concern of botnet attacks. We
explored existing security solutions but acknowledged their
limitations, especially when applied to resource-constrained
devices. Our objective is to overcome these challenges and
propose an effective botnet detection approach tailored for IoT
networks.

3.1 General Description of Proposed Approach
We explore the benefits of traffic analysis in botnet detection
and introduce our approach, which incorporates a flow-based
traffic analysis model

3.1.1. Traffic Analysis

 In traditional botnet detection methods, payload analysis
involves inspecting the content of TCP and UDP packets for
specific malicious signatures. However, this approach has
limitations, including resource-intensive operations, slow

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

265

processing speeds, and vulnerability to encryption. To
overcome these challenges, we employ traffic analysis as an
alternative approach.
 Traffic analysis focuses on the overall characteristics of
network traffic generated by IoT devices rather than inspecting
packet payloads. This approach takes advantage of the notion
that legitimate IoT network traffic exhibits a certain level of
uniformity and can be characterized by specific attributes.
Unlike payload-based methods, traffic analysis is not affected by
encryption, and dedicated hardware can efficiently extract
relevant traffic information without significantly impacting the
IoT network.
 Our approach involves examining the traffic flows within a
defined time window. By analyzing the patterns and behaviors
of these flows, we can identify anomalies associated with
botnet activity. We leverage the inherent uniformity present in
legitimate IoT network traffic to differentiate between normal
and malicious behavior. Specific techniques used in our traffic
analysis-based approach may include statistical analysis,
machine learning algorithms, or artificial intelligence to identify
malicious traffic patterns. By analyzing attributes such as flow
duration, packet count, communication patterns, and other
relevant features, we can detect and classify botnet activity
accurately.
 Overall, our traffic analysis-based approach provides a
more efficient and effective method for detecting botnets in IoT
networks. It overcomes the limitations of payload analysis, such
as resource consumption and susceptibility to encryption, by
focusing on the characteristics of network traffic. This approach
enables us to identify and mitigate botnet threats while
preserving the functionality and security of IoT devices.

3.1.2 Overview of the Approach:
Previous research has shown that certain classes of network
traffic can be detected by analyzing their traffic patterns. In an
IoT network, devices perform specific, repetitive tasks, resulting
in a predictable and regular behavior as long as they remain
uncompromised. Our approach takes advantage of this by
utilizing one-class classifiers to model the normal behavior of
IoT devices and detect anomalies, eliminating the need for
labeled malicious data for training. To characterize legitimate
IoT traffic, we consider static flow-based attributes such as total
packet count, flow duration, average and variance of packet
sizes, and more. By observing these attributes within a defined
time window, we analyze the behavior of a flow. However,
selecting an appropriate time window size is crucial. A window
that is too small may miss important traffic patterns, while a
window that is too large introduces longer detection delays. Our
approach consists of two phases: learning and detection. During
the learning phase, the detection system is trained using a set
of known legitimate data attribute vectors to establish a model

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

266

of normal behavior for IoT devices. In the detection phase, the
system actively monitors network traffic, generating attribute
vectors from active flows and classifying them. If a set of
attribute vectors is classified as malicious in real-time data, the
corresponding flows are flagged as suspicious.
 By leveraging traffic analysis and one-class classification,
our approach provides a practical and efficient method for
identifying botnet activity in IoT networks. It enables the
detection of anomalies without relying on labeled malicious
data, and it captures the inherent regularity of legitimate IoT
traffic while minimizing false positives.

 The proposed methodology, as illustrated in Figure 3,
consists of two primary phases:

 1- Data Preprocessing Phase: In this phase, we
perform four steps. Firstly, we extract the flow features from
the raw network capture using Tranalyzer, an open-source flow
exporter. This tool calculates statistical flow-based features. The
second and third steps involve encoding categorical data and
standardizing the features, respectively. Lastly, we select the
most representative subset of attributes using an attribute
selection method tailored for one-class classification. This helps
ensure accurate classification of botnet traffic.
 2- Classification Model Construction Phase: The
second phase focuses on constructing the classification model
based on the selected features. We employ the Autoencoder
algorithm, which is a one-class classification algorithm. The
Autoencoder learns a compressed representation of normal
traffic patterns by training on the chosen attributes. It
reconstructs the input data and identifies deviations from
normal patterns. Instances that cannot be properly
reconstructed are deemed anomalies, potentially indicating
botnet activity.

 By following this two-phase approach and utilizing the
Autoencoder algorithm, our methodology offers an effective
solution for detecting botnet traffic in IoT networks. The
preprocessing phase ensures the extraction and standardization
of relevant features, while the classification phase employs
deep learning techniques to identify anomalies associated with
botnet activity.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

267

Figure 3. Steps of the proposed approach

3.2 Network capture

 The raw network capture data used in our approach is derived
from the Aposemat IoT-23 dataset [31]. This dataset aims to
provide a comprehensive collection of real and labeled IoT
malware infections along with benign IoT traffic. The network
traffic was captured at the Stratosphere Laboratory, AIC Group,
FEL, CTU University in the Czech Republic.

 The IoT-23 dataset consists of twenty-three captures,
known as scenarios, representing different types of labeled IoT
network traffic. The original PCAP files were processed using the
Zeek network traffic analyzer, with a 5-second time window for
each capture. The scenarios are categorized into twenty
captures of network traffic from IoT devices infected by twelve
distinct botnet types, and three captures of legitimate IoT
device traffic.

 For the malicious scenarios, specific malware was executed
on a Raspberry Pi, employing various protocols and performing
diverse actions. On the other hand, the network traffic capture
for the benign scenarios was obtained from three non-infected,
real IoT devices: a Philips HUE smart LED lamp, an Amazon Echo
smart home assistant, and a Somfy smart door lock. These
devices represent genuine, uninfected hardware, allowing for
the capture and analysis of normal network behavior.
 Given the extensive size of the IoT-23 dataset, we selected
twelve scenarios, one for each botnet type, and the three
scenarios representing non-infected real IoT devices. Detailed
information about these selected scenarios can be found in
Tables 2 and 3.

Table 2: The captures of botnets running on infected Raspberry
Pis involve the collection of network traffic, categorized by the
number of flows for each specific type, within a defined time
interval.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

268

Raspberry PI (Infected) Malicious traffic type (5 second flow)

Botnet
Capture Duration

(Hrs)
Scan C&C DDoS Attack File Download

Mirai 24 10114 11816 234 10000 11

Linux Mirai 24 0 6480 55339 0 0

Linux Hajime 24 953 0 0 0 0

Okiru 24 0 15688 0 0 0

Hakai 24 0
8222

0
0 0 0

Trojan 8 0 3 0 0 3

Torii 24 0 16291 0 0 0

Muhstik 36 147026 4020 0 0 0

Hide and Seek 112 571264 8 0 0 0

Kenjiro 24 0 0 20000 0 0

Gagfyt 24 0 0 20000 0 0

IRCbot 7 248880 0 0 0 0

 Our anomaly detection model, which relies on machine
learning algorithms, is positioned between the switch
connecting the IoT devices and the router (gateway). It is
designed to identify five distinct types of flows associated with
malicious activities. These flows represent the communication
patterns between various servers, Raspberry Pis, and the three
IoT devices:

 - C&C: This type indicates that the infected device is
connected to a command and control server.

 - DDoS: It signifies an ongoing distributed denial-of-service
(DDoS) attack being executed by the infected device.

 - Attack: This label indicates that the infected device is
launching a specific type of attack towards another host, such
as brute-forcing a Telnet connection or injecting commands into
the header of a GET request.

 - FileDownload: It suggests that a file is being downloaded
onto the infected device. However, we did not utilize this type
of traffic for classifier evaluation due to its limited occurrence.
- Scan: This flow indicates that connections are being used
to conduct horizontal port scanning, gathering information for
potential further attacks.

Table 3: The captured network traffic from the non-infected real
IoT devices

Real IoTs Capture Duration (Hrs) Traffic (Flow Number)

Amazon Echo 5.4 7682

Philips Hue Bridge 24 78293

Somfy diirlock 1.4 4424

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

269

 By analyzing the network traffic and classifying it based on

these flow types, our model can effectively detect anomalous
behavior and identify potential security threats in the IoT
network.

 Figure 4 illustrates the experimental environment topology
used in our approach to simulate the detection of malicious
botnet traffic from the IoT-23 dataset. The network
configuration includes a botmaster machine and three servers.
The botmaster machine serves as the controller, interacting
with the command and control (C&C) server to monitor
potential new victims and the botnet's current status through
communication with the report server.
 Additionally, the botmaster can initiate attacks on the
target server by issuing commands via the C&C server. The
loader server plays a role in connecting to the target device and
instructing it to download and execute the appropriate binary
version of the botnet upon receiving the infection command
from the botmaster. To capture the data flow within the
network, the sniffer machine is utilized. Our detection system
analyzes this flow and generates alerts if any anomalies are
detected, providing valuable information to the IoT user.

Figure 4. The network topology of the experimental
environment

 3.3 Data Preprocessing
Data preprocessing is a crucial technique employed to convert
raw data into a clean and usable dataset. When data is collected
from different sources, it is often in an unstructured format,

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

270

unsuitable for analysis purposes. Therefore, preprocessing
steps are performed to transform the data into a refined and
organized format, ensuring its suitability for subsequent
machine learning tasks. In our approach, the data preprocessing
phase comprises four key steps. Firstly, we extract relevant
features using Tranalyzer. Secondly, we encode categorical data
to enable proper representation and analysis. Next,
standardization is applied to normalize the data and bring it into
a consistent scale. Finally, attribute selection is performed using
filters based on attribute importance measures. By executing
these preprocessing steps, we ensure that the data is
transformed into a clean and manageable dataset, facilitating
accurate analysis and effective machine learning outcomes.

3.3.1 Feature Extraction
Feature extraction is a fundamental process in analyzing
network traffic, and one common approach is to use flow
extractors. In our approach, we employed the Tranalyzer tool
for this purpose. Tranalyzer is a lightweight and efficient packet
analyzer and flow generator designed for both practitioners and
researchers. It extends the capabilities of Cisco NetFlow and
assists analysts in handling large volumes of packets. By
capturing live IP traces from Ethernet interfaces or pcap files,
Tranalyzer enables the exploration of flows and individual
packets of interest. It can quickly generate reduced pcap files
for in-depth analysis using its text-based packet mode or by
loading them into tools like tcpdump or Wireshark.
Implemented in C and built on the libpcap library, Tranalyzer
offers the flexibility to extract key parameters and statistics
from captured IP traces.

 Figure 5. An example of flows exported by Tranalyzer [32].

3.3.2 Encoding Categorical Data
 Tranalyzer generates a set of 62 attributes, comprising both

numerical and categorical variables. Numerical attributes, such
as flow duration, packet count, and Round Trip Time (RTT), have
inherent quantitative values that can be directly utilized by
machine learning algorithms without any preprocessing.

 On the other hand, categorical attributes contain non-
quantitative values known as categories. For example, the
"tcpAnomaly" attribute denotes anomalies present in a packet
and represents a categorical variable with multiple modalities
like SYN-FIN flags, which should not coexist within the same

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

271

packet. Incorporating categorical variables into the learning
process can introduce complexity since most machine learning
algorithms operate on numerical input. Therefore, it becomes
necessary to find a suitable method for encoding these
categorical modalities into numerical representations.

 To address this, we employed the "get_dummies" function
from the Pandas library in Python for encoding our categorical
data. This widely-used function simplifies the transformation of
categorical variables into numerical ones. It operates by
creating K indicator variables, where K represents the number
of modalities. Each indicator variable is a binary vector with a
value of 1 for the corresponding modality and 0 for others. By
replacing the original categorical variable with these indicator
variables, we enable machine learning algorithms to effectively
process the data.
 However, it's important to note that using the
"get_dummies" approach may result in an increased number of
variables, especially when dealing with a large number of
modalities (e.g., more than 100). This can lead to a larger
dataset, occupying more memory and potentially affecting the
performance of machine learning algorithms during processing.

3.4 Standardization and Attribute Selection

 Standardization is a common requirement for many machine
learning estimators because they can perform poorly if
individual features do not resemble approximately normally
distributed data. In our approach, we utilized the Scikit-Learn
library in Python to standardize the data, which involves
removing the mean and scaling the variance to a unit value. For
instance, many learning algorithms rely on the assumption that
all features are centered around zero and have a similar
variance. However, if a particular feature has a much larger
variance compared to others, it can overshadow the objective
function and hinder the estimator's ability to properly learn
from other features as intended.

 To address this issue, we apply standardization to ensure
that features have comparable scales and are centered around
zero. By subtracting the mean and dividing by the standard
deviation, we transform the features to have a mean of zero and
a variance of one. This process allows machine learning
algorithms to effectively learn from all features without any
single feature dominating the learning process. By utilizing the
Scikit-Learn library for data standardization, we guarantee that
our features are appropriately scaled, preventing any potential
biases or dominance issues that may arise from features with
varying scales or variances. In order to perform attribute
selection on the dataset, we opted for a filter-based technique
implemented in Matlab, as described in [33]. This approach
utilizes a set of attribute importance measures that generate
various rankings. These rankings are then combined to select
the subset of attributes with the highest rankings. Furthermore,

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

272

the overall importance of an attribute is enhanced when the
rankings produced by each metric are merged. It is important to
note that attribute selection through filtering retains a subset of
the original features, unlike feature extraction which creates
new, potentially less interpretable features. The ranking list for
each attribute is obtained by applying metrics specifically
designed for single-class variable selection. These metrics assign
a specific order to the attributes in the dataset, and
subsequently, they are aggregated using a suitable technique.

 The following importance measures, detailed in [33], were
employed in this work:

 1- Spectral Score (SPEC): This measure evaluates the
coherence of features with the structure of a graph constructed
based on the similarity matrix of labeled and unlabeled data.
Features that align well with the graph's structure, indicating
consistent and similar positive data, receive higher scores.

 2- Information Score (IS): This metric assesses the relevance
of each attribute by measuring the decrease in entropy when
the attribute is removed from the dataset. If the removal leads
to higher similarity among the remaining data, the attribute is
considered important.

 3- Pearson Correlation (PC): This measure quantifies the
degree of association between each attribute and others. It
checks for linear dependence among attributes and favors
lower values, indicating weaker correlation, to retain
uncorrelated attributes.

 4- Intra-Class Distance (ICD): This metric quantifies the
distance of each attribute's samples from the centroid of their
respective class. Attributes that result in smaller distance
reductions are considered better as they are closer to the data.

 5- Interquartile Range (IQR): This measure takes into account
the distribution of feature values across their interquartile
range. Attributes with values that tend to be more concentrated
are considered more representative of the dataset.
 The implementation details for these attribute importance
measures can be found in [34]. After obtaining the attribute
ranking lists along with their corresponding aggregation values
using Matlab, we sorted the attributes in ascending order based
on their aggregation values. We selected the top 12 attributes
that satisfied two conditions: reaching a minimum number of
attributes and either maintaining or improving the performance
of the classifier. We also accepted a slight degradation in
performance, if necessary. The resulting 12 selected attributes,
along with their respective Rank values, are listed below and
visualized in Figure 6.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

273

Fig. 6. The 12 attributes selected and sorted according to their
Rank value

The correlation matrix, displayed in Figure 7, provides insights
into the relationships between attributes. Attributes with high
correlation exhibit stronger linear dependence, indicating that
they have a similar impact on the dependent variable. However,
the 12 selected attributes demonstrate a correlation of less than
50%, indicating a low level of dependence between them. This
finding reinforces the reliability of our attribute selection
process, as it ensures that the chosen attributes offer distinct
and independent information for analysis.

Fig. 7. Correlation Matrix of the 12 Selected Attributes.

4. Experimental Validation and Performance Analysis

4.1 Performance Evaluation

 In this section, we describe the implementation of our approach
for testing and evaluate its performance. We utilized Python 3
for implementing the approach using the free cloud service
Google Colab (Colaboratory), which is based on Jupyter
Notebook and designed for machine learning research and
training. Google Colab provides access to various libraries and
services offered by Google. The scripts created in Colab are
automatically saved on Google Drive, allowing for easy sharing

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

274

of the scripts.
 To ensure data persistence and availability, we uploaded
our database containing the required CSV files for training and
prediction to Google Drive. This way, we could read the data
from this location whenever needed, preventing data loss upon
disconnection from the service. The single-class classifiers were
implemented using the TensorFlow library in Python. For
evaluating the performance of our proposed approach, we
employed six performance metrics. These metrics are
computed based on four measures: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).

 The performance metrics used in our evaluation are as
follows:
- Accuracy: It measures the ratio of correctly classified
abnormal and normal instances to the total number of
instances. Accuracy provides an overall indication of how well
the model performs, but it does not provide detailed insights
into specific applications.

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑭𝑷+ 𝑭𝑵+ 𝑻𝑵)

- Precision: It represents the ratio of correctly classified
abnormal instances to the total number of instances classified
as abnormal. Precision indicates how often the model is correct
when it predicts positive data. It should be noted that precision
is different from accuracy.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)

- Recall: Recall measures the ratio of correctly classified
abnormal instances to the total number of actual abnormal
instances. It signifies the model's ability to identify all relevant
instances correctly.

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)

- Specificity: Specificity is the ratio of true negatives to the
total number of negatives in the dataset. It measures the
model's ability to correctly identify true negatives.

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒕𝒚 =
𝑻𝑵

(𝑻𝑵 + 𝑭𝑷)

- F1Score: The F1 score is a measure of the test's precision,
considering both precision and recall to calculate the score. It
is the harmonic mean of precision and recall, with the best
value being 1.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

275

𝑭𝟏𝑺𝒄𝒐𝒓𝒆 =
𝟐 ∗ (𝑹𝒆𝒄𝒂𝒍𝒍 ∗ 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)

(𝑹𝒆𝒄𝒂𝒍𝒍 + 𝑭𝑷𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧)

- Receiver Operating Characteristic (ROC): The ROC curve
represents the trade-off between true positive rate and false
positive rate. The area under the ROC curve (AUC) is a
performance measure indicating the model's ability to
distinguish between classes and avoid false classifications

 References
 By implementing our approach in this manner and
evaluating its performance using these metrics, we were able to
assess its effectiveness and gain insights into its classification
and prediction capabilities.

4.2 Results and Discussion
This section presents the findings and analysis obtained from
the implementation of the algorithm described in Chapter 3.
The performance of the classification model was evaluated
using various metrics such as Accuracy, Precision, Recall, F1
Score, Specificity, and average AUC. The dataset used for
training consisted of 70% legitimate traffic, while 30% was used
for testing, focusing on binary classification.

 Table 4: Optimized Hyperparameters

Hyperparameters Value

Activation function (relu, relu, relu, softmax)

Hidden Layers (Nb attribut, 8, 3, 8, Nb attribut)

Threshold 8

Loss Mean_squared_error

Optimizer Adam

 Two experiments were conducted to assess the model's

performance. In the first experiment, the model was trained
using legitimate traffic from real IoT devices and tested with
different types of malicious traffic generated by botnets running
on Raspberry Pi devices (Scan, C&C, DDoS, Attack). The
objective was to evaluate the model's ability to differentiate
between legitimate and malicious traffic, as well as its
effectiveness in detecting different types of attacks.
 The second experiment aimed to evaluate the final model's
capability in detecting zero-day attacks in IoT networks with
minimal false positives. The normal class included all traffic from
real IoT devices, while the abnormal class consisted of simulated
malicious traffic from the IOT-23 dataset. The results are
presented in tables 5, 6, and 7 and figures 8, 9, and 10. Various
techniques were applied to improve the detection
performance, including hyperparameter tuning for the
AutoEncoder, feature selection, and optimization of runtime.
The specific hyperparameters used are detailed in Table 4.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

276

 Table 5: Somfy IoT Lock

Malicious traffic
type

Recall Accuracy F1score Precision ROC Specificity

Scan 97,17% 99,04% 98,83% 97,17% 99,04% 99,80%

DDos 81,12% 86,11% 84,56% 81,12% 86,11% 96,91%

C&C 91,23% 95,11% 92,22% 91,23% 95,11% 94,45%

Attack 97,70% 99,22% 98,57% 97,70% 99,22% 99,92%

Table 5 displays the metrics obtained for the classifier trained
on the Somfy dorlock traffic. The F1 Score, representing the
balance between precision and recall, was used for result
comparison. The classifier successfully distinguished between
legitimate and malicious traffic, achieving an F1 Score above
85%.

Figure 8. IoT Somfy dorlock traffic

Table 6: IoT Philips Hue Bridge

Malicious traffic
type

Recall Accuracy F1score Precision ROC Specificity

Scan 83,11% 98,97% 88,11% 83,11% 99,04% 98,83%

DDos 71,98% 74,03% 75,13% 71,98% 86,11% 74,11%

C&C 76,04% 80,95% 79,94% 76,04% 95,11% 81,13%

Attack 98,12% 96,03% 98,15% 98,12% 99,22% 96,17%

 The results of the classifier based on the Philips Hue Bridge

traffic are shown in Table 6. The performance was slightly lower
compared to the first IoT device, indicating some dependency
between legitimate and malicious traffic. The DDoS and C&C
communications showed F1 scores of 74.48% and 80.16%,
respectively.
 Similar results were obtained for the classifier trained on
Amazon Echo traffic, as presented in Table 7. There was a slight
decline in detecting DDoS and C&C traffic, highlighting the
challenge of differentiating these types of attacks from
legitimate traffic. However, the classifier performed well in
detecting Attack and Scan traffic, achieving F1 scores exceeding
97% and 87%, respectively.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

277

Fig. 9. IoT Philips Hue Bridge traffic

Table 7: Bridge IoT Amazon Echo

Malicious traffic
type

Recall Accuracy F1score Precision ROC Specificity

Scan 97,89% 86,03% 86,89% 97,89% 86,03% 72,95%

DDos 71,13% 66,25% 88,04% 71,13% 66,25% 72,95%

C&C 57,12% 78,11% 72,31% 57,12% 78,11% 72,95%

Attack 95,39% 98,13% 98,06% 95,39% 98,13% 72,95%

 The second experiment's results, shown in Table 8,

demonstrated the model's ability to establish a common profile
among the legitimate traffic of the three IoT devices, leading to
improved precision in detecting anomalies.
Additionally, a feature selection method was applied, resulting
in a slight degradation in performance but with a significant
improvement in runtime.

Fig. 10. IoT Amazon Echo traffic

Table 8: Learning IOT traffic with and without selection of attributes

Malicious traffic
type

Recall Accuracy F1score Precision ROC Specificity

Without Selection 97,44% 95.9% 96 96,89%
96,03

%
94,95%

With Selection 99.2% 92.4% 92.8% 98,83% 93,25% 87%

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

278

Comparing our AutoEncoder approach with supervised machine
learning algorithms on the IOT-23 dataset, our deep learning-
based one-class approach showed promising results. Supervised
classifiers often struggle with detecting new attacks due to the
need for labeled training data. In contrast, our AutoEncoder
approach outperformed the linear SVM classifier used in
previous work [35].

Table 9: Comparison table of AutoEncoder and linear SVM results

Classifier Recall Accuracy F1score Precision

Linear SVM 98% 92% 90% 84%

Our Approach 99% 94% 92% 98%

 Table 9 provides a performance comparison between our
AutoEncoder approach and linear SVM. In conclusion, this
section presents a detailed analysis of the results obtained from
our approach and identifies areas for further improvement. The
comparison with other approaches demonstrates the
effectiveness of our deep learning-based one-class approach in
detecting anomalies in IoT networks.

5. Conclusion

 This research aimed to develop a botnet detection approach for
Internet of Things (IoT) networks without impacting their
normal functioning. Botnets are collections of compromised IoT
devices that are controlled remotely to launch cyberattacks. The
researcher began by studying IoT network vulnerabilities and
common attacks to understand the security challenges.
Network traffic analysis was identified as a promising method
since botnets can be identified by anomalies in device behavior
and traffic patterns. Existing literature on botnet detection
techniques for IoT was reviewed to inform their approach.
Network traffic would be analyzed using Python tools due to
their powerful data processing capabilities. An unsupervised
deep learning technique called one-class classification was
selected to model each device's regular traffic profile without
labeled malware samples. It detects abnormal deviations from

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

279

normal behavior. An autoencoder-based one-class classifier was
implemented and evaluated on the IOT-23 dataset. The
experiments demonstrated it can accurately pinpoint malicious
traffic with a 93% F1 score. Feature selection was also applied
to reduce training/prediction time while maintaining
performance.

 In summary, the researcher developed and tested a botnet
detection solution for IoT networks focused on network traffic
analysis and one-class deep learning. It aimed to protect these
networks from botnet infections without disrupting normal
device operation.
 This research successfully achieved its original objective of
developing a method to detect botnets targeting IoT networks,
thereby enhancing security for connected devices. However,
further refining and expanding the work maintains potential for
significant progress. One avenue is more rigorously validating
the proposed solution across more diverse IoT environments
and botnet variants. This could involve generating custom
detection models leveraging different device types' legitimate
traffic patterns to test generalizability. Evaluating performance
when applied to new network conditions would provide
invaluable insights. Additionally, the autoencoder performed
strongly on scan and attack traffic, indicating promise for
identifying compromised devices very early on. Detecting
infections during initial targeting and infiltration offers
opportunities to prevent many systems from becoming bots.
Continued research focusing specifically on detection
approaches suited for discriminating abnormal behaviors
exhibited uniquely by IoT systems under initial botnet
development could offer substantial value. Timely recognition
of emerging threats aims to curb the scalability and impacts of
these network-abusing programs. While the objectives were
met, assessing cross-domain applicability and applying learnings
to detecting botnets during their genesis represent especially
worthwhile future work avenues. Ongoing experimentation and
algorithm refinement applying these concepts maintains
potential to significantly enhance capabilities to safeguard
connected infrastructures. Overall, refining generalizability
testing and expounding detection during early compromise
stages represent pathways for impactful research expansions
building on foundations established.

References

Luigi Atzori, Antonio Iera, Giacomo Morabito, The Internet of Things:

A survey, Computer Networks, Volume 54, Issue 15, 2010,

Pages 2787-2805.

Avani Sharma, Emmanuel S. Pilli, Arka P. Mazumdar, Poonam Gera,

Towards trustworthy Internet of Things: A survey on Trust

Management applications and schemes, Computer

Communications, Volume 160, 2020, Pages 475-493.

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

280

M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted

approach to understanding the botnet phenomenon,” in

Proceedings of the 6th ACM SIGCOMM on Internet

measurement - IMC ’06, (Rio de Janeriro, Brazil), p. 41, ACM

Press, 2006.

Thakkar, A., Lohiya, R. A survey on intrusion detection system: feature

selection, model, performance measures, application

perspective, challenges, and future research directions. Artif

Intell Rev 55, 453–563 (2022).

 https://doi.org/10.1007/s10462-021-10037-9

Khanna, A., Kaur, S. Internet of Things (IoT), Applications and

Challenges: A Comprehensive Review. Wireless Pers Commun

114, 1687–1762 (2020). https://doi.org/10.1007/s11277-020-

07446-4

Krishna Kumar, Aman Kumar, Narendra Kumar, Mazin Abed

Mohammed, Alaa S. Al-Waisy, Mustafa Musa Jaber, Rachna

Shah, Mohammed Nasser Al-Andoli, "Dimensions of Internet of

Things: Technological Taxonomy Architecture Applications and

Open Challenges—A Systematic Review", Wireless

Communications and Mobile Computing, vol. 2022, Article ID

9148373, 23 pages, 2022.

Geng Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson,

“M2M: From mobile to embedded internet,” IEEE

Communications Magazine, vol. 49, pp. 36–43, Apr. 2011.

Salih, Kazhan Othman Mohammed, Tarik A Rashid, Dalibor

Radovanovic, and Nebojsa Bacanin. 2022. A comprehensive

survey

Latif, Shahid, Maha Driss,Wadii Boulila, Sajjad Shaukat Jamal, Zeba

Idrees, Jawad Ahmad, et al. 2021. Deep learning for the

industrial internet of things (iiot): a comprehensive survey of

techniques, implementation frameworks, potential

applications, and future directions. Sensors 21 (22): 7518. on

the internet of things with the industrial marketplace. Sensors

22 (3): 730.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of

Things (IoT): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7), 1645-

1660.H. Moore, “Security Flaws in Universal Plug and Play

Unplug. Don’t Play,” 2013.

Sadhu, Pintu Kumar, Venkata P Yanambaka, and Ahmed Abdelgawad.

2022. Internet of things: security and solutions survey. Sensors

22 (19): 7433.

Swessi, D., Idoudi, H. A Survey on Internet-of-Things Security: Threats

and Emerging Countermeasures. Wireless Pers Commun 124,

1557–1592 (2022). https://doi.org/10.1007/s11277-021-

09420-0

M. Vanhoef and F. Piessens, “Key Reinstallation Attacks: Forcing Nonce

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

281

Reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, (Dallas

Texas USA), pp. 1313– 1328, ACM, Oct. 2017.

Ma Y, Wu Y, Yu D, Ding L, Chen Y. Vulnerability association evaluation

of Internet of thing devices based on attack graph. International

Journal of Distributed Sensor Networks. 2022;18(5).

doi:10.1177/15501329221097817

Gu, Guofei & Perdisci, Roberto & Zhang, Junjie & Lee, Wenke. (2008).

BotMiner: Clustering Analysis of Network Traffic for Protocol-

and Structure-Independent Botnet Detection. {USENIX}

Association, CCS'08. Pp. 139-154.

Patel, Chintan. "Secure Lightweight Authentication for Multi User IoT

Environment." arXiv preprint arXiv:2207.10353 (2022).

Syed Muhammad Sajjad, Muhammad Rafiq Mufti, Muhammad Yousaf,

Waqar Aslam, Reem Alshahrani, Nadhem Nemri, Humaira Afzal,

Muhammad Asghar Khan, Chien-Ming Chen, "Detection and

Blockchain-Based Collaborative Mitigation of Internet of Things

Botnets", Wireless Communications and Mobile Computing,

vol. 2022, Article ID 1194899, 26 pages, 2022.

https://doi.org/10.1155/2022/1194899

Khraisat, A., Alazab, A. A critical review of intrusion detection systems

in the internet of things: techniques, deployment strategy,

validation strategy, attacks, public datasets and challenges.

Cybersecur 4, 18 (2021). https://doi.org/10.1186/s42400-021-

00077-7

Fouladi, B. and Ghanoun, S., 2013. Security evaluation of the Z-Wave

wireless protocol. Black hat USA, 24, pp.1-2.

S. Pastrana, J. Rodriguez-Canseco, and A. Calleja, “ArduWorm: A

Functional Malware Targeting Arduino Devices,” p. 8.

M. Ryan, “Bluetooth: With Low Energy comes Low Security,” 7th

USENIX Workshop on Offensive Technologies (WOOT 13) ,

USENIX Association, p. 7.

E. Bertino and N. Islam, “Botnets and Internet of Things Security,”

Computer, vol. 50, pp. 76–79, Feb. 2017.

M. Feily, A. Shahrestani, and S. Ramadass, “A Survey of Botnet and

Botnet Detection,” in 2009 Third International Conference on

Emerging Security In-formation, Systems and Technologies,

(Athens/Glyfada, Greece), pp. 268–273, IEEE, 2009.

KOLIAS, Constantinos, KAMBOURAKIS, Georgios, STAVROU, Angelos,

et al. DDoS in the IoT: Mirai and other botnets. Computer, 2017,

vol. 50, no 7, p. 80-84.

Muhammad Hassan Nasir, Junaid Arshad, Muhammad Mubashir Khan,

Collaborative device-level botnet detection for internet of

things, Computers & Security, Volume 129, 2023.

A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” in 29th

Annual IEEE International Conference on Local Computer

Journal of Namibian Studies, 35 (2023): 254-282 ISSN: 2197-5523 (online)

Special Issue on Engineering, Technology and Sciences

282

Networks, (Tampa, FL, USA), pp. 455–462, IEEE (Comput. Soc.),

2004.

S. Nomm and H. Bahsi, “Unsupervised Anomaly Based Botnet

Detection in IoT Networks,” in 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA),

(Orlando, FL), pp. 1048–1053, IEEE, Dec. 2018.

Yuanyuan Zeng, Xin Hu, and K. G. Shin, “Detection of botnets using

combined host and network level information,” in 2010

IEEE/IFIP International Conference on Dependable Systems

Networks (DSN), (Chicago, IL), pp. 291–300, IEEE, June 2010.

M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,

and A. P. Sheth, “Machine learning for Internet of Things data

analysis: A survey,” Digital Communications and Networks, vol.

4, pp. 161–175, Aug. 2018. arXiv: 1802.06305.

M. A. Manzoor and Y. Morgan, “Network Intrusion Detection System

using Apache Storm,” Advances in Science, Technology and

Engineering Systems Journal, vol. 2, pp. 812–818, June 2017.

Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga. (2020).

IoT-23: A labeled dataset with malicious and benign IoT

network traffic (Version 1.0.0) [Data set].

LuizHNLorena, LuizHNLorena/FilterFeatureOneClass,”

https://github.com / LuizHNLorena / FilterFeatureOneClass.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, and D. Cournapeau, “Scikit-learn:

Machine Learning in Python,” MA- CHINE LEARNING IN

PYTHON, p.6.

“Tranalyzer documentation.” https://tranalyzer.com/documentation.

A.A.; Abu Al-Haija, Q.; Tayeb, A.; Alqahtani, A. An Intrusion Detection

and Classification System for IoT Traffic with Improved Data

Engineering. Appl. Sci. 2022, 12, 12336.

 https://doi.org/10.3390/app122312336

