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regression  

 

Mayyadah Aljasimee1, Rahim Alhamzawi2 

 

Abstract  
Bayesian regularized composite quantile regression (CQR) method 
with group bridge penalty is adopted to conduct covariate selection 
and estimation in CQR. MCMC algorithm was improved for 
posterior inference employing a scale mixture of normal of the 
asymmetric Laplace distribution (ALD). The suggested algorithm 
uses priors for the coefficients of regression, which are scale 
mixtures of multivariate uniform distributions with a particular 
Gamma distribution as a mixing distribution. Simulation results and 
analyses of real data show that the suggested MCMC sampler has 
excellent mixing feature and outperforms the current approaches 
in terms of prediction accuracy and model selection.  

Keywords: Bayesian inference, Composite quantile regression, 
Group bridge, MCMC, scale mixture of uniform.  

  

1. Introduction  
The normal linear regression model supposes that an outcomes vector 
y = (y1, ··· , yn)ʹcan be written as 

𝑦 =  𝑏01 +  𝑋𝛽 +  𝜀,                                       (1) 
where X = (x1, ··· , xn)ʹis a n × p covariates matrix, b0 is the intercept, 
1 is an n × 1 unit vector, β = (β1, ···, βp)ʹ, ε = (ε1, ··· , εn)ʹ are 
independent, as well as εi has a Gaussian distribution having mean 0 
and variance σ2. According to model (1), it's supposed that only an 
unfamiliar subset from covariates are effective in the regression; 
therefore, the issue of covariate selecting is to find this unfamiliar 
subset of covariates. 

Traditional approaches to model selection based on the observed data 
log likelihood, comparing a set of candidate models include Mallows’s 
Cp (Mallows, 1973), Akaike information criterion (AIC; Akaike, 
1973),and Bayesian information criterion (BIC; Schwarz et al., 1978). 
Among the new approaches that are based on regularization and 
selection operator involve the bridge regression (Frank and Friedman, 
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1993), lasso (Tibshirani, 1996), smoothly clipped absolute deviation 
(Fan and Li, 2001), fused lasso (Tibshirani et al., 2005), adaptive lasso 
(Zou, 2006), graphical lasso (Yuan and Lin, 2006), dantzig selector 
(Candes and Tao, 2007), and matrix completion (Cand`es and Tao, 
2010; Mazumder et al., 2011), among others. These approaches are 
setup for selecting individual covariates. However, covariates are 
naturally grouped in many real studies. An important example appears 
in association studies, genes may form overlapping sets where each 
gene can be involved in multiple tracks (Jacob et al., 2009). For this and 
other situations, Yuan and Lin (2006) suggested the group lasso 
penalty for choosing covariates groups by introducing a suitable 
expansion of the lasso penalty. Since Yuan and Lin (2006), over the 
years, various group lasso methods have been improved for dealing 
with chosen groups of covariates (see for example, Breheny, 2015; 
Huang et al., 2012, 2009; Meier et al., 2008; Park and Yoon, 2011; Qian 
et al., 2016; Simon et al., 2013; Simon and Tibshirani, 2012). 

Although covariate selection methods in standard mean regression 
models have been well developed, we frequently require to assess 
effects of covariates on outcome variable at various quantile levels. 
Koenker and Bassett (1978) suggested quantile regression (QR) to 
overcome this issue. Compared to standard mean regression, QR is 
more strong to data outliers than standard mean regression, and can 
provide a more clear picture of the relation between covariates and 
outcome of interest. However, for linear regression models, Zou and 
Yuan (2008) indicated that QR may result in an arbitrarily tiny relative 
efficiency when compared with the standard mean regression. Since, 
QR at one quantile can provide more efficient estimators than QR at 
another quantile, Zou and Yuan (2008) suggested a composite QR 
(CQR) approach to simultaneously study multiple QR models. They 
proved that, irrespective of the error distribution, the relative 
efficiency of the CQR estimator is higher than 70% when compared to 
the mean regression estimator. Recently, when p is finite, CQR has 
been employed in covariate selection methods; for example see, Zou 
and Yuan (2008), Bradic et al. (2011) and Jiang et al. (2012). In this 
paper, we suggest a Bayesian framework to combine CQR and group 
bridge penalty together to perform model selection and estimation of 
coefficients simultaneously. 

We introduce the CQR with the group bridge penalty in Section 2. We 
also outline the Bayesian sampler algorithm for CQR. Section 3 is 
where we run examples of simulation to investigate the performance 
of the suggested approach, and we explain our approach employing 
the prostate cancer data in Section 4. Finally, in Section 5, we conclude 
with a summarized discussion. 
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2. Methods 
2.1 QR 

QR (Koenker and Bassett, 1978) has acquired growing popularity since 
it makes few assumptions about the error distribution. For the θth 
quantile (0 < θ < 1), the linear QR model is y = b0 + Xβ + ϵ, where ϵ = 
(ϵ1, · · · , ϵn)ʹare independent, and their θth quantiles equal to zero. 
The θth QR model takes the form of 

𝑄𝑦𝑖
(𝑥𝑖) = 𝑏𝜃 + 𝑥𝑖

ˊ𝛽,                                          (2) 
where bθ is the quantile intercept. The regression parameters bθ and 
β are estimated by minimizing (Koenker and Bassett, 1978): 

𝑏𝜃, 𝛽𝑚𝑖𝑛 ∑ 𝜌𝜃(𝑦𝑖 − 𝑏𝜃 − 𝑥𝑖
ˊ𝛽)𝑛

𝑖=1 ,                            (3) 
where ρ_θ (w)= wθ - wI(w ≤ 0) denotes the quantile check (loss) 
function and I(.) denotes the indicator function. The ALD provides a 
possible parametric correlation between the minimization issue in (3) 
and the maximum likelihood theorem (Koenker and Machado, 1999; 
Yu and Moyeed, 2001). The ALD density function for the response y is 

𝑓(𝜇, 𝜎) =
𝜃(1 − 𝜃) 

𝜎
𝑒𝑥𝑝 {−

𝜌𝜃(𝑦 − µ)

𝜎
},                    (4) 

where σ is the scale parameter and µ is the location parameter. Yu and 
Moyeed (2001) introduced a Bayesian framework for QR employing 
the ALD for the errors, and the MCMC Metropolis-Hastings sampling 
algorithm is utilized to (approximately) draw β from it's conditional 
distribution. Kozumi and Kobayashi (2011) improved an efficient Gibbs 
sampling algorithm for Bayesian QR by assuming that the random 
variable ϵ_i=(1-2θ) w_i+√(2σw_i z_i ) follows the ALD, where w_i  and 
z_i have an exponential distribution having scale parameter (θ(1 − 
θ)/σ) and a standard normal distribution, respectively (see, Alhamzawi 
and Yu, 2012; Alshaybawee et al., 2017; Alhamzawi and Ali, 2018; 
Alhamzawi et al., 2019; Alhamzawi, Taha Mohammad Ali, 2020). As the 
conditional distribution of y_i  given w_i  is normal having mean 
b_θ+x_i^ˊ β+(1 - 2θ)w_i   and variance 2σw_i, the density of y_i is given 
by 

𝑝(𝑦𝑖|𝑥𝑖, 𝛽, 𝑏𝜃, 𝑤𝑖, 𝜎)

=
1

√4𝜋𝜎𝑤𝑖

𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑏𝜃 − 𝑥𝑖

ˊ𝛽 − (1 −  2𝜃)𝑤𝑖)
2

4𝜎𝑤𝑖
}        (5) 

 

2.2 CQR 

CQR (Zou and Yuan, 2008) has acquired growing popularity as it can 
combine information of numerous quantiles simultaneously to get a 
group of good estimations. Denote 0 < θ_1<θ_2< ··· <θ_K< 1, where( 
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θ_k  = k )⁄((K)+1). The  CQR  estimators  of bθ = (bθ1 , · · · , bθK ) and β 
can be estimated by minimizing 

(𝑏̂𝜃, 𝛽̂) = 𝑏𝜃, 𝛽𝑚𝑖𝑛 ∑ {∑ 𝜌𝜃𝑘
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽)𝐾

𝑘=1 }𝑛
𝑖=1 ,        (6) 

Huang and Chen (2015) and Alhamzawi (2016) proposed Bayesian 
formulations for CQR using the ALD for the errors. Under these 
formulations, the joint distribution of y is 

𝑝(𝑋, 𝛽, 𝑏𝜃, 𝑤, 𝜎)

= ∏ ∏(
1

√4𝜋𝜎𝑤𝑖𝑘

)𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽 − 𝜉𝑘𝑤𝑖𝑘)

2

4𝜎𝑤𝑖𝑘
}

𝑛

𝑖=1

𝐾

𝑘=1

,             (7) 

where w = (w_1, · · · , w_K), w_k = (w_1k, · · · , w_nk) and ξ_k = 1 − 2θk. 

2.3 CQR with the group bridge penalty 

Assume that the covariates are collected into G groups so that 𝑥𝑖 =

(𝑥𝑖1
ˊ , … , 𝑥𝑖𝐺

ˊ )
ˊ

, 𝛽 = (𝛽1
ˊ , … , 𝛽𝐺

ˊ )
ˊ

is the m_g-dimensional coefficient 
vector of the gth group covariates 𝑥𝑖𝑔, ∑ 𝑚𝑔

𝐺
𝑔=1 = 𝑝 and G < p. In this 

paper, we define the following group bridge regularized CQR: 

(𝑏̂𝜃, 𝛽̂) = 𝑏𝜃, 𝛽𝑚𝑖𝑛 ∑ {∑ 𝜌𝜃𝑘
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽)𝐾

𝑘=1 }𝑛
𝑖=1 +

∑ 𝜆𝑔‖𝛽𝑔‖1
𝛼𝐺

𝑔=1 ,     (8) 
Where ‖βg‖1 is the L1 norm of βg , λg > 0, g = 1, ··· , G are the group-
specific shrinkage parameters and α > 0 denotes the concavity 
parameter. The bridge parameter α does covariate selection when α ∈ 
(0, 1], and shrinks the coefficients of regression when α > 1. From a 
Bayesian point of view, one may define the following group bridge 
prior on the coefficients (G´omez-S´anchez-Manzano et al., 2008; 
G´omez-Villegas et al., 2011; Mallick and Yi, 2018): 

𝑝(𝛼, 𝜆1,· · · , 𝜆𝐺) ∝ ∏ 𝑒𝑥𝑝 (−𝜆𝑔‖𝛽𝑔‖1
𝛼)𝐺

𝑔=1 .                   (9) 

If we remove the dependence on the group index g, the prior for a 
group bridge may be written as follows 

𝑝(𝛽) =
𝜆

𝑝
𝛼𝛤(𝑝+1)

2𝑝𝛤(
𝑝

𝛼
+1)

𝑒𝑥𝑝 (−𝜆‖𝛽‖1
𝛼) .                                        (10) 

If we put the group bridge prior (9) on β and assume the errors ϵi is 
from the ALD (4), the conditional distribution of β is 



 
 
 
 
 
  

 

 

437   

𝑝(𝑋, 𝛽, 𝑏𝜃, 𝑤, 𝜎)

∝ 𝑒𝑥𝑝 {− ∑ ∑
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽 − 𝜉𝑘𝑤𝑖𝑘)

2

4𝜎𝑤𝑖𝑘

𝐾

𝑘=1

𝑛

𝑖=1

− ∑ 𝜆𝑔‖𝛽𝑔‖1
𝛼

𝐺

𝑔=1

}.      (11) 

So minimizing the group bridge regularized CQR (8) is equivalent to 
maximizing the composite likelihood (11). Mallick and Yi (2018) show 
that the group bridge prior may be expressed as a scale mixture of 
multivariate uniform (SMU) distribution, the mixing density is a 
specific Gamma distribution, in other words, β|u ∼ Multivariate 
Uniform (A), where A = {β ∈ Rq : ‖𝛽𝑔‖1

𝛼 <  u}, u   >   0  and u ∼ Gamma 
(q/α+ 1, λ). Putting Beta prior on α and Gamma priors on λ_g and σk, 
the Bayesian hierarchical model for CQR with group bridge penalty (8) 
is as follows 

𝑦𝑖 = ∏(𝑏𝜃𝑘
+ 𝑥𝑖

ˊ𝛽 + 𝜉𝑘𝑤𝑖𝑘 + √2𝜎𝑤𝑖𝑘𝑧𝑖)

𝐾

𝑘=1

, 𝑖 =  1,· · · , 𝑛, 

𝑤|𝜎 ∼ ∏ ∏
𝜃𝑘(1 − 𝜃𝑘)

𝜎
𝑒𝑥𝑝 (−

𝜃𝑘(1 − 𝜃𝑘)

𝜎
𝑤𝑖𝑘)

𝑛

𝑖=1

𝐾

𝑘=1

 , 

𝑧 ∼ ∏ 𝑁(0,1)

𝑛

𝑖=1

, 

𝛽𝑔|𝑢𝑔,𝛼 ∼  𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Ω𝑔) 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦 𝑓𝑜𝑟 𝑔 
=  1,· · · , 𝐺, 

where Ω 𝑔 = {𝛽𝑔  ∈  𝑅𝑚𝑔   : ‖𝛽𝑔‖1
𝛼 <   𝑢𝑔 }, 

𝑢1, … , 𝑢𝐺|𝜆1, … , 𝜆𝐺 , 𝛼 ∼ ∏ 𝐺𝑎𝑚𝑚𝑎(
𝑚𝑔

𝛼
+ 1, 𝜆𝑔)

𝐺

𝑔=1

, 

𝜆1, … , 𝜆𝐺 ∼ ∏ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)𝐺
𝑔=1 ,                              (12) 

α ∼ Beta(c, d), 

σ ∼ Gamma(r, δ), 
where u = (u1, · · · , uG), and λ = (λ1, · · · , λG). It's clear that the full 
conditional posteriors may be obtained by employing easy algebra for 
the prior description and the parameters of interest (bθ, β, σ, 𝑤, u, λ, 
α) can be sampled as listed in Figure 1. 
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Figure 1: MCMC sampling for the Bayesian group bridge CQR. 

 

 

3. Simulation Studies 
Here, we use simulations of Monte Carlo to illustrate the performance 
of Bayesian group Bridge CQR (BgBCQR) with comparison to the lasso 
CQR (LCQR, Zou and Yuan, 2008), Bayesian lasso CQR (BLCQR, Huang 
and Chen, 2015), Bayesian group bridge regression (BgBR, Mallick and 

Input:(y, X) 

Initialize: (bθ , β, σ, 𝒘, u, λ, α) 

for t = 1, . . . , (t max + t burn-in) do 

1. Sample 𝜷|. ∼  𝑁𝑝( 𝜷, 𝐵) ∏ 𝐼 {‖𝜷𝑔‖
2

𝛼
<   𝑢𝑔 }𝐺

𝑔=1 , where 

𝐵−1 = (∑ ∑
𝑥𝑖𝑥𝑖

ˊ

2𝜎𝑤𝑖𝑘

𝐾
𝑘=1

𝑛
𝑖=1 ) and 

𝜷 = 𝐵 (∑ ∑
𝑥𝑖(𝑦𝑖 − 𝑏𝜃𝑘

− 𝒙𝒊
ˊ 𝜷 − 𝜉𝑘𝑤𝑖𝑘)

2𝜎𝑤𝑖𝑘

𝐾

𝑘=1

𝑛

𝑖=1
) 

2. Sample 𝑏𝜃𝑘
|. ∼

𝑁 (
∑ (𝑦𝑖−𝑏𝜃𝑘

−𝒙𝒊
ˊ 𝜷−𝜉𝑘𝑤𝑖𝑘) 2𝜎𝑤𝑖𝑘⁄𝑛

𝑖=1

∑ 1 2𝜎𝑤𝑖𝑘⁄𝑛
𝑖=1

,
1

∑ 1 2𝜎𝑤𝑖𝑘⁄𝑛
𝑖=1

) 

3. Sample 𝑤𝑖𝑘|. ∼ inverse Gaussian (
1

2𝜎
, √

1

(𝑦𝑖−𝑏𝜃𝑘
−𝒙𝒊

ˊ 𝜷)
2)  

4. Sample 𝜎|. ∼ inverse Gamma (
3𝑛𝐾

2
+

𝑟,
1

2
∑ ∑

(𝑦𝑖−𝑏𝜃𝑘
−𝒙𝒊

ˊ 𝜷−𝜉𝑘𝑤𝑖𝑘)
2

2𝑤𝑖𝑘

𝐾
𝑘=1

𝑛
𝑖=1 + ∑ ∑ 𝜃𝑘(1 −𝐾

𝑘=1
𝑛
𝑖=1

 𝜃𝑘)𝑤𝑖𝑘 + 𝛿)  

5. Sample 𝑢|. ∼ ∏ Exponential(𝜆𝑔)𝐼 { 𝑢𝑔 > ‖𝜷𝑔‖
1

𝛼
}𝐺

𝑔=1  

6. Sample 𝝀|. ∼ ∏ Gamma (𝑎 + 𝑚𝑔 𝛼⁄ , 𝑏 +𝐺
𝑔=1

∑ ‖𝜷𝑔‖
1

𝛼𝐺
𝑔=1 ) 

7. Sample 𝛼|. ∼ 𝛼𝑐−1(1 −

𝛼)𝑑−1 ∏
𝜆𝑔

𝑚𝑔 𝛼⁄

Γ(
𝑚𝑔

𝛼
+1)

𝑒𝑥𝑝 (−𝜆𝑔‖𝜷𝑔‖
1

𝛼
)𝐺

𝑔=1 , which has no closed form.

  Since 𝑝(. ) is  a  log-concave,  we  update  α  using  Adaptive 

Rejection Sampling (ARS; Gilks, 1992) 

end for 
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Yi, 2018), group bridge regression (gBR, Huang et al., 2009) and group 
Lasso regression (gLR, Yuan and Lin, 2005). The Bayesian estimations 
are posterior means employing 11,000 draws of the MCMC algorithm 
following burn-in the first 2,000 draws. For our approach, we set  a = 
1, b = 0.1, r = 10, δ = 10, c = 0.1, and d = 0.1. 

We generate data using the following real model 

y = Xβ + ε 

In each generated data, we consider three different choices for the 
error distribution: N (0,9), t(3) distribution having (3) freedom 
degrees, and 𝜒(3)

2  distribution having (3)  freedom degrees. 

Additionally, we run 100 replications. In each replication, we simulate 
a training set of 20 observations and a testing set of 200 observations. 
Example 1 (Li et al., 2010). In this example, the rows of the design 
matrix X are provided by  (𝐼(𝑆1 = 0), 𝐼(𝑆1 = 1), 𝐼(𝑆1 = 2), · · ·
  , 𝐼(𝑆5  =  0), 𝐼(𝑆5 =  1), 𝐼(𝑆5 = 2)), where the latent variables 𝑆 =
 (𝑆1,· · · , 𝑆5)ˊ are simulated independently from  N (0, Σ) with the (i, 
j)th element of Σ is ρ|i−j|  and ρ = 0.5. Each latent variable Sj for j = 1, · · 
· , 5 is trichotomized as zero, one or two, depending on whether it's 
less than F −1(1/3), between F −1(1/3) and F −1(2/3), or greater than F 
−1(2/3), where F −1 is the quantile function to standard normal 
distribution. We set the regression coefficients vector as β = ((−1.2, 
1.8, 0), (0, 0, 0), (0.5, 1, 0), (0, 0, 0), (1, 1, 0)). Thus, the regression 
parameters in a group may be either all zero, all nonzero or partly. We 
use {nT, nP} = {20, 400}, {50, 400} and {100, 400} respectively, to 
simulate datasets, where nT stands for the number of the observations 
in the training set, while nP stands for the number of the observations 
in the testing set. The experimental outcomes are presented in Table 
1. Here, in terms of prediction accuracy, our suggested approach 
outperforms current Bayesian and non-Bayesian approaches. 
Example 2 (High Correlation Example). The setup for this example is 
identical to the first, excepting we set ρ = 0.95. The experimental 
outcomes are presented in Table 2. Here also, in terms of prediction 
accuracy, our suggested approach outperforms the other methods. 
Example 3. The setup for this example is identical to the first, excepting 
we set the coefficients of regression vector as β = ((0.5, 1, 1.5, 2, 2.5), 
(2, 2, 2, 2, 2), (0, 0, 0, 0, 0)). Thus, in each group, the regression 
parameters are either all nonzero or all zero. The experimental 
outcomes are shown in Table 3. Again, we may observe that in terms 
of prediction accuracy, our proposed approach outperforms the other 
approaches. 
Overall, the simulations show that all of the Bayesian approaches have 
the same accuracy of the prediction in most of the cases, so often 
outperform their frequentist counterparts in terms of prediction 
accuracy all over a wide range of scenarios. 
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Table 1: Median of mean absolute deviations (MMAD) with the 
standard deviations of MAD (SD) for Example 1. The bold numbers of 
MMAD stands for the least MMAD in each category. 

 

Table 2: MMAD with the standard deviations of MAD (SD) for 
Example 2. The bold numbers of MMAD stands for the least MMAD 
in each category. 
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4. Real Data Analyses 
In this section, we implement the suggested approach for the standard 
datasets, namely the data of prostate cancer (Stamey et al., 1989). This 
dataset has been utilized for illustration in previous regularization 
papers. In this dataset, the logarithm of prostate-specified antigen is 
the outcome of interest. Here is a list describing briefly the response 
variable and 8 covariates. 

We compare the mean squared prediction errors (MMSE) for Prostate 
data analyses in Table 4, which shows that our suggested approach 
outperforms both the existing Bayesian and non-Bayesian approaches 
in terms of prediction accuracy. 

lcavol Log(volume of cancer) 

lweight Log(weight of the prostate) 

age Age 

lbph Log(The quantity of benign prostatic hyperplasia) 

svi Invasion of seminal vesicles 

lcp Log(capsular breakthrough) 

gleason The Gleason result 

pgg45 The rate of Gleason results is four or five 

lpsa Log(prostatic specified antigan) 

Table 3: MMAD with the standard deviations of MAD (SD) for 
Example 3. The bold numbers of MMAD stands for the least MMAD 
in each category. 
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Table 4: MMSE for Prostate data analyses. 

Method MMSE 

gLR 0.48 

gBR 0.48 

BgBR 0.47 

BgBCQR 0.45 

 

5. Discussion 
We have introduced a Bayesian analysis of group bridge CQR and 
employing a scale mixture of normals of the ALD, we have proposed 
Gibbs sampler algorithm for posterior inference. The suggested 
algorithm uses priors for the coefficients of regression, which are scale 
mixtures of multivariate uniform distributions with a particular 
Gamma distribution as a mixing distribution. The suggested algorithm 
is active in regularization under a variety of scenarios, as 
demonstrated by simulation examples. We have as well illustrated the 
advantages of the new method on prostate data example. Thus, both 
the simulation and the data of prostate cancer reveal great support for 
the employment of Bayesian group bridge CQR. 

 

Bibliography  
 

[1]  Akaike, H. (1973). Information theory and an extension of maximum 
likelihood principle. In Second International Symposium on  Information  
Theory,  B.  N. Petrov and F. Csaki (eds), Budapest: Akademiai Kiado. 

[2]  Alhamzawi, R. (2016). Bayesian analysis of composite quantile 
regression. Statistics in Biosciences 8 (2), 358–373. 

[3] Alhamzawi, R., & Ali, H. T. M. (2018). The Bayesian elastic net regression. 
Communications in Statistics-Simulation and Computation, 47(4), 1168-
1178.  

[4]  Alhamzawi, R., & Taha Mohammad Ali, H. (2020). A new Gibbs sampler 
for Bayesian lasso. Communications in Statistics-Simulation and 
Computation, 49(7), 1855-1871.  

[5]  Alhamzawi, R., Alhamzawi, A., & Ali, H. T. M. (2019). New Gibbs sampling 
methods for Bayesian regularized quantile regression. Computers in 
biology and medicine, 110, 52-65. 

[6] Alhamzawi, R. and K. Yu (2012). Conjugate priors and variable selection for 
Bayesian quantile regression. Computational Statistics & Data Analysis, 
in press.  

[7]  Alshaybawee, T., Midi, H., & Alhamzawi, R. (2017). Bayesian elastic net 
single index quantile regression. Journal of Applied Statistics, 44(5), 853-
871. 



 
 
 
 
 
  

 

 

443   

[8] Bradic, J., J. Fan, and W. Wang (2011). Penalized composite quasi-
likelihood for ultrahigh dimensional variable selection. Journal of the 
Royal Statistical Society, Ser. B 73, 325–349. 

[9]  Breheny, P. (2015). The group exponential lasso for bi-level variable 
selection. Bio- metrics 71 (3), 731–740.  

[10] Candes, E. and T. Tao (2007). The dantzig selector: Statistical estimation 
when p is much larger than n. The Annals of Statistics, 2313–2351. 

[11] Cand`es,  E.  J.  and  T.  Tao  (2010). The  power of convex relaxation:  
Near-optimal matrix completion. IEEE Transactions on Information 
Theory 56 (5), 2053–2080. 

[12] Fan, J. and R. Li (2001). Variable selection via nonconcave penalized 
likelihood and its oracle properties. Journal of the American statistical 
Association 96 (456), 1348–1360. 

[13] Frank, L. E. and J. H. Friedman (1993). A statistical view of some 
chemometrics regression tools. Technometrics 35 (2), 109–135.  

[14] Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for gibbs 
sampling. Bayesian statistics 4 (2), 641–649.  

[15] G´omez-S´anchez-Manzano, E., M. G´omez-Villegas, and J. Mar´ın (2008). 
Multivariate exponential power distributions as mixtures of normal 
distributions with bayesian applications. Communications in Statistics—
Theory and Methods 37 (6), 972–985. 

[16] G´omez-Villegas, M.  A.,  E.  G´omez-S´anchez-Manzano,   P.  Ma´ın,  and  
H. Navarro (2011). The effect of non-normality in the power exponential 
distributions. In Modern mathematical tools and techniques in capturing 
complexity, pp. 119–129. Springer.  

[17] Huang, H. and Z. Chen (2015). Bayesian composite quantile regression. 
Journal of Statistical Computation and Simulation 85 (18), 3744–3754. 

[18] Huang, J., P. Breheny, and S. Ma (2012). A selective review of group 
selection in high-dimensional models. Statistical science: a review 
journal of the Institute of Mathematical Statistics 27 (4). 

[19] Huang, J., S. Ma, H. Xie, and C.-H. Zhang (2009). A group bridge approach 
for variable selection. Biometrika 96 (2), 339–355. 

[20] Jacob, L., G. Obozinski, and J.-P. Vert (2009). Group lasso with overlap 
and graph lasso. In Proceedings of the 26th annual international 
conference on machine learning, pp. 433–440. 

[21] Jiang, X., J. Jiang, and X. Song (2012). Oracle model selection for nonlinear 
models based on weighted composite quantile regression. Statistica 
Sinica, 1479–1506. 

[22] Koenker, R. and G. Bassett (1978). Regression quantiles.  Econometrica: 
Journal of the Econometric Society , 33–50. 

[23] Koenker, R. and J. A. Machado (1999). Goodness of fit and related 
inference processes for quantile regression. Journal of the  American  
Statistical  association 94 (448), 1296–1310.  

[24] Kozumi, H. and G. Kobayashi (2011). Gibbs sampling methods for 
Bayesian quantile regression. Journal of statistical computation and 
simulation 81 (11), 1565–1578. 

[25] Li, Q., R. Xi, and N. Lin (2010). Bayesian regularized quantile regression. 
Bayesian Analysis 5, 533–556. 



 
 
 
 
 
  

 

 

444   

[26] Mallick, H. and N. Yi (2018). Bayesian bridge regression. Journal of  
applied statistics 45 (6), 988–1008. 

[27] Mallows CL (1973) Some comments on CP. Technometrics 15 : 661–675. 

[28] Mazumder, R., J. H. Friedman, and T. Hastie (2011). Sparsenet: 
Coordinate descent with nonconvex penalties. Journal  of  the  American  
Statistical  Association 106 (495), 1125–1138. 

[29] Meier, L., S. Van De Geer, and P. Bu¨hlmann (2008). The  group lasso for 
logistic regression. Journal of the Royal Statistical Society: Series B 
(Statistical Method- ology) 70 (1), 53–71. 

[30] Park, C. and Y. J. Yoon (2011). Bridge regression: adaptivity and group 
selection. Journal of Statistical Planning and Inference 141 (11), 3506–
3519. 

[31] Qian, W., Y. Yang, and H. Zou (2016). Tweedie’s compound poisson model 
with grouped elastic net. Journal of Computational and Graphical 
Statistics 25 (2), 606–625. 

[32] Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals 
of statistics 6 (2), 461–464.  

[33] Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2013). A sparse-group 
lasso. Journal of Computational and Graphical Statistics 22 (2), 231–245. 

[34] Simon, N. and R. Tibshirani (2012). Standardization and the group lasso 
penalty. Statistica Sinica 22 (3), 983–1001. 

[35] Stamey, T., J. Kabalin, J. McNeal, I. Johnstone, F. Freiha, E. Redwine, and 
N. Yang (1989). Prostate specific antigen in the diagnosis and treatment 
of adenocarcinoma of the prostate, II: Radical prostatectomy treated 
patients. Journal of Urology 141, 1076–1083.  

[36] Tibshirani, R. (1996).  Regression shrinkage and selection via the lasso.  
Journal  of the Royal Statistical Society. Series B (Methodological), 267–
288. 

[37] Tibshirani, R., M. Saunders, S. Rosset, J. Zhu, and K. Knight (2005). 
Sparsity and smoothness via the fused lasso. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology) 67 (1), 91–108. 

[38] Yu, K. and R. A. Moyeed (2001). Bayesian quantile regression. Statistics & 
Probability Letters 54, 437–4471 

[39] Yuan, M. and Y. Lin (2005). Model selection and estimation in regression 
with grouped variables. Journal of the Royal Statistical Society, Series B 
68, 49–67.  

[40] Yuan, M. and Y. Lin (2005). Model selection and estimation in regression 
with grouped variables. Journal of the Royal Statistical Society, Series B 
68, 49–67. 

[41] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of 
the American statistical association 101 (476), 1418–1429.  

[42] Zou, H. and M. Yuan (2008). Composite quantile regression and the oracle 
model selection theory. The Annals of Statistics 36 (3), 1108–1126. 

 


