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Abstract  
Objective: This analysis aimed to compare three machine learning 
models—Logistic Regression, Naive Bayes, and Linear Discriminant 
Analysis (LDA)—for their ability to predict credit card default. 

Methods: Each model's performance was evaluated based on 
accuracy, sensitivity, and specificity metrics using a dataset of 
credit card holders. 

Results: All three models demonstrated similar accuracy levels, 
between 0.969 and 0.9715, indicating a good ability to correctly 
classify cases overall. In terms of sensitivity, or the ability to 
correctly identify non-default accounts, all models achieved high 
scores (0.9953 to 0.9979). However, there were differences in the 
specificity, or the ability to correctly identify default accounts. The 
Logistic Regression model showed a higher specificity (0.2754) 
compared to the Naive Bayes and LDA models (both 0.2319), 
suggesting a better performance in identifying default accounts. 

Implications: While all three models showed high accuracy and 
sensitivity, the Logistic Regression model outperformed in terms of 
specificity, making it the preferred model for this task. However, all 
models exhibited relatively weak performance in identifying 
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default accounts, indicating a potential need for further 
optimization, consideration of other metrics, or different modeling 
approaches, especially given the high cost associated with 
misclassifying defaulting accounts. However, all models exhibited 
relatively weak performance in identifying default accounts. This is 
likely due to the imbalanced nature of the data. Therefore, 
different modeling approaches or techniques to handle imbalanced 
data might be necessary to improve the identification of defaults. 

 

Keywords: Credit Default Prediction; Machine Learning; Logistic 
Regression; Naive Bayes; Linear Discriminant Analysis 

Introduction 

Predicting credit defaults is an essential task for financial institutions 
worldwide. The rise in the availability of financial products and services 
and the growing number of credit users necessitates that banks and credit 
card companies have precise models to accurately forecast credit 
defaults. Doing so helps them mitigate risk and maintain financial 
stability. For decades, traditional models such as Logistic Regression and 
other statistical techniques have served as the cornerstone for predicting 
credit defaults (Hand & Henley, 1997). These models, while robust, often 
grapple with high-dimensional, non-linear data, a common scenario in the 
current era of big data. 

The advent of machine learning (ML) techniques has opened a new 
chapter in credit risk modeling. Machine learning models, such as Naive 
Bayes and Linear Discriminant Analysis, have demonstrated promising 
results in various financial prediction tasks (Huang et al., 2004). These 
models, characterized by their flexibility, can adeptly handle complex data 
patterns, thereby providing more accurate and reliable predictions than 
traditional statistical methods. However, the application of these 
advanced models is not without challenges. One of the primary issues 
they confront is handling imbalanced datasets, a prevalent problem in 
credit default prediction (Chawla et al., 2002). 

In this study, we delve into the application of different machine learning 
techniques - Logistic Regression, Naive Bayes, and Linear Discriminant 
Analysis - to predict credit defaults using virtual data. We follow the 
methodology proposed by Lessmann et al. (2015) and evaluate the 
performance of these models in terms of accuracy, sensitivity, and 
specificity.  

Using virtual data for our study allows us to assess the effectiveness of 
these machine learning techniques under a variety of conditions, without 
compromising privacy and confidentiality - an important consideration 
when dealing with sensitive financial information. Although our study 
employs virtual data, the methods and techniques used can be easily 
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applied to proprietary business data, making the insights gained from our 
research directly applicable to real-world business scenarios. 

By offering a comprehensive understanding of the performance of 
different machine learning techniques in credit default prediction and 
providing valuable insights into how to effectively manage the issue of 
imbalanced datasets, we aim to make a significant contribution to the 
existing body of literature. Our findings will be of practical use to 
businesses seeking to enhance their credit risk modeling techniques, thus 
bridging the gap between academia and industry. 

Data   

5.1 Data source 

“Default” dataset is a simulated dataset commonly used in research and 
educational settings to explore credit card default behavior. This dataset 
is a valuable resource for studying the factors that contribute to credit 
card defaults and developing predictive models to aid in risk assessment 
and decision-making in the financial domain. In this section, a brief 
description of the Default dataset will be provided, including the sources 
of data, and variables explanation. 

The dataset is secondary data originated from R program, which is 
typically sourced from the "ISLR" package (Introduction to Statistical 
Learning with Applications in R). This package provides datasets and 
functions that accompany the textbook "An Introduction to Statistical 
Learning" by James, Witten, Hastie, and Tibshirani. 

The dataset's simulated nature allows researchers to explore the 
relationship between the predictor variables and the likelihood of default 
in a controlled environment. In our research, we utilized the Default 
dataset to investigate the factors contributing to credit card default. By 
analyzing this dataset, we aimed to uncover patterns and relationships 
that can inform risk assessment strategies in the financial industry. The 
dataset's characteristics, including both binary and numeric variables, 
make it suitable for building predictive models using techniques such as 
logistic regression. 

To ensure the validity of our results, we conducted appropriate data 
preprocessing steps, such as checking for missing values, performing 
exploratory data analysis, and addressing potential outliers by R program. 
We also split the dataset into training and testing parts to evaluate the 
performance of our predictive models.  

By utilizing the Default dataset, we contribute to the existing knowledge 
base surrounding credit card default behavior and provide insights that 
can assist financial institutions in making informed decisions regarding 
risk management and customer creditworthiness assessment. 
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5.2  Data description  

Table 1: Variable explanation 

Order Variable 
Name 

Type Label Description 

1 Default Binary A factor with levels No and Yes 
indicating whether the customer 
defaulted on their debt 

2 Student Binary A factor with levels No and Yes 
indicating whether the customer is a 
student 

3 Balance  Numerical The average balance that the 
customer has remaining on their 
credit card after making their monthly 
payment 

4 Income Numerical Income of customer 

The Default dataset consists of a collection of 10,000 observations on 
credit card holders and their default payment status. It includes several 
variables that provide insights into the characteristics and financial 
behavior of the credit card holders. The main variable of interest is 
"Default," which represents the binary response variable indicating 
whether a customer defaulted on their credit card payment. It takes on 
two values: "No" indicating no default, and "Yes" indicating a default. In 
addition to the Default variable, the dataset includes several predictor 
variables that can potentially influence the likelihood of default. These 
variables provide additional information about the customers, such as 
whether they are students ("Student"), the outstanding balance on their 
credit card ("Balance"), and their annual income ("Income"). 

Research Methodology  

3.1  Model construction  

3.1.1 Logistic Regression 

Logistic regression is a statistical modeling technique employed to 
investigate the relation between a dependent variable and one or more 
independent variables. It is primarily employed when the dependent 
variable represents a categorical outcome with two possible outcomes, 
such as "yes" or "no".  

The goal of logistic regression is to estimate the probability of the 
occurrence of a particular outcome based on the values of the 
independent variables. It utilizes a logistic function, also known as the 
sigmoid function, to transform the linear combination of the independent 
variables into a probability value between 0 and 1. In our case, the 
predictors of the model such as student, balance, and income are used to 
predict the probability of default. If predicted value is larger than 0.5, 
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meaning that it is nearer to 1, it will be defined as “yes”, otherwise the 
predicted default result is anticipated as “no”.  

Logistic regression makes use of maximum likelihood estimation to 
determine the optimal coefficients that define the relationship between 
the independent variables and the probability of the outcome. These 
coefficients are typically interpreted as the log-odds or odds ratios, which 
indicate the impact of each independent variable on the likelihood of the 
outcome occurring. 

We have the theorical framework:  

In logistic regression, the dependent variable is modeled as a binary 
variable, typically denoted as "y," where y = 1 represents the occurrence 
of the event of interest (e.g., success) and y = 0 represents the absence of 
the event. The logistic function is defined as follows: 

p = 
1

1+e−z 

where: p represents the probability of the event of interest (y = 1); e is the 
base of the natural logarithm (approximately 2.71828), and z is the linear 
function of the predictors. 

The linear function of the predictors is calculated as: 

z = log
p

1−p
 = β₀ + β₁x₁ + β₂x₂ + ... + βₚxₚ 

where: β₀, β₁, β₂, ..., βₚ are the coefficients (also known as weights) 
associated with each independent variable; x₁, x₂, ..., xₚ are the values of 
the independent variables; and p represents the number of independent 
variables (predictors) in the model. 

The coefficients (β₀, β₁, β₂, ..., βₚ) in logistic regression are estimated using 
maximum likelihood estimation. The estimation process aims to find the 
values of the coefficients that maximize the likelihood of observing the 
given set of outcomes. Once the coefficients are estimated, they can be 
used to predict the probability of the event of interest for new 
observations by plugging in the corresponding values of the independent 
variables into the logistic function. 

Based on the framework, we apply the model into our case, and have the 
model:  

log
Default

1−Default
 = β₀ + β₁*Student + β₂*Balance + β3*Income 

3.1.2 Linear Discriminant Analysis (LDA) 

Another model for classification tasks is Linear Discriminant Analysis 
(LDA), which both help simplify the process and improve computational 
efficiency. With the technique of dimensionality reduction, LDA aims to 
reduce the dimensionality of the input feature space while preserving the 
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discriminatory information between different classes, maximizing the 
separation among them.  

The theoretical framework of LDA is based on Bayes' theorem and 
assumes that the data follows a Gaussian distribution. The key idea is to 
model the distribution of each class and then use this information to 
determine the optimal linear discriminant function. 

In LDA, the separation between classes is quantified using the Separation 
formula, defined as the ratio of the between-group variance to the within-
group variance. Symbolically, this can be represented as S = W-1 * B, 
where W denotes the within-group variance and B represents the 
between-group variance. By calculating the Separation Matrix, LDA 
identifies the eigenvectors and eigenvalues, which indicate the directions 
of maximum separation and the importance of these directions, 
respectively. Based on the eigenvectors, a model is constructed to 
compute the discriminant scores. These scores are then normalized to 
obtain classification values that range from 0 to 1. A higher score indicates 
a higher likelihood of default. This normalization process ensures that the 
scores are interpretable and can be compared across different 
observations. 

Through its theoretical framework, LDA facilitates dimensionality 
reduction and optimal class separation, resulting in a simplified and 
efficient classification process. By identifying the most discriminative 
directions, LDA provides valuable insights into the factors driving 
classification outcomes. 

3.1.3 Naïve Bayes  

Naïve Bayes is a classification algorithm that utilizes Bayes' theorem to 
estimate the probability of class labels based on observed features. It 
assumes that the features are independent of each other. The theoretical 
framework of Naive Bayes revolves around calculating the conditional 
probability of a class label given a specific combination of feature values.  

The theorical framework of Naïve Bayes model:  

P(y|X) = 
P(X|y) ∗ P(y)

P(X)
 

Where: P(y|X) represents the posterior likelihood of class y given the 
features X; P(X|y) stands for the likelihood probability of features X given 
class y; P(y) denotes the prior likelihood of class y; and P(X) signifies the 
probability of features X. 

In our scenario, the classification problem involves two distinct classes: 
default and non-default. We consider three features, namely student, 
balance, and income. The key assumption made is that these features are 
independent of each other. By calculating the probabilities of default and 
non-default for each observation, we can determine the class label. If the 
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probability of default for a given observation exceeds the probability of 
non-default, the observation is classified as default, and vice versa. 

3.2 Model Evaluation 

When evaluating a model's performance in binary classification tasks, 
accuracy, specificity, and sensitivity are commonly used measures. 
Accuracy represents the overall correctness of the model's predictions 
and is calculated as the ratio of correct predictions to the total number of 
predictions. The formula for accuracy is: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Here, TP (True Positives) represents the number of correctly predicted 
positive instances, TN (True Negatives) represents the number of 
correctly predicted negative instances, FP (False Positives) represents the 
number of incorrectly predicted positive instances, and FN (False 
Negatives) represents the number of incorrectly predicted negative 
instances. 

Specificity, also known as the true negative rate, evaluates the model's 
ability to correctly identify negative instances. It is calculated as the ratio 
of true negatives to the sum of true negatives and false positives: 

Specificity = TN / (TN + FP) 

Sensitivity, also known as the true positive rate or recall, measures the 
model's ability to correctly identify positive instances. It is calculated as 
the ratio of true positives to the sum of true positives and false negatives: 

Sensitivity = TP / (TP + FN) 

Accuracy provides an overall measure of the model's correctness, while 
specificity and sensitivity focus on the model's performance for negative 
and positive instances, respectively. Specificity helps in scenarios where 
correctly identifying negative instances is crucial, while sensitivity is 
important when correctly capturing positive instances is of utmost 
importance. 

To evaluate a model using these metrics, the dataset is split into two parts 
as training and testing. The model is trained on the training data, and its 
predictions are compared to the true outcomes in the testing data. The 
accuracy, specificity, and sensitivity values can then be calculated based 
on the predicted and observed outcomes using the formulas. 

By considering accuracy, specificity, and sensitivity, analysts gain a 
comprehensive understanding of a model's performance in binary 
classification tasks. These metrics aid in making informed decisions and 
adjusting the model, if necessary, ultimately improving its effectiveness 
and applicability in real-world scenarios. 

By considering accuracy, specificity, and sensitivity, analysts gain a 
comprehensive understanding of a model's performance in binary 
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classification tasks. These metrics aid in making informed decisions and 
adjusting the model, if necessary, ultimately improving its effectiveness 
and applicability in real-world scenarios. 

Empirical Result  

4.1 Descriptive Statistics 

4.2.1 Numerical Variables  

Table 2: Descriptive Statistics of Balance and Income 

Vars N Mean Sd Median Min Max Range Skew Kurtosis SE 
Balance 10000 835.37 483.71 823.64 0 2654.32 2654.32 0.25 -0.36 4.84 
Income 10000 33516.98 13336.64 34552.65 771.97 73554.23 72782.27 0.07 -0.9 133.37 

The provided descriptive statistics table offers valuable insights into the 
characteristics of the data, focusing on two numerical variables: Balance 
and Income. 

Regarding Balance variable, we observe that the mean balance across 
10,000 accounts is approximately $835.37, while the median balance 
stands at $823.64. The range of balances spans from 0 to $2,654.32, 
indicating a considerable variation in account balances. The standard 
deviation of 483.72 quantifies the extent of spread or dispersion in the 
data. Moreover, the standard error of balance, which is 4.84, suggests 
that the population mean could deviate by approximately 4.84 units from 
the sample mean. The skewness of 0.25, close to 0, indicates that the 
distribution of balance values is nearly symmetrical. Furthermore, a 
kurtosis value of -0.36 suggests that the tail of the balance distribution is 
lighter than that of a normal distribution (where kurtosis is 3). 

In terms of Income variable, we find that customer incomes range from 
$772 to $73,554, with an average income of approximately $33,517. The 
standard deviation of 13,337 reflects the significant variability in income 
levels among customers. Similar to the Balance variable, the Income 
variable also exhibits a near-symmetrical distribution with a skewness 
close to 0. Additionally, the kurtosis value of the income distribution (-
0.36) indicates that its tail is lighter than that of a normal distribution. 

The boxplot visualization clearly illustrates a substantial and significant 
difference in balance between default and non-default accounts. When 
comparing the mean balance, non-default customers exhibit a range of 
approximately 700-800, whereas default customers have a notably higher 
mean balance of nearly 1800. Additionally, the interquartile range, which 
represents the spread of the middle 50% of the data, further emphasizes 
the contrast. For non-default accounts, the interquartile range spans 
approximately 500 to around 1200, indicating a relatively moderate 
dispersion of balances. In contrast, default accounts display a wider 
interquartile range of 1500-2000, signifying a more substantial spread of 
balances. Therefore, it can be confidently concluded that default 
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customers possess larger balances compared to their non-default 
counterparts, as evident from the distinct patterns showcased in the 
boxplot. This insightful analysis of the balance discrepancy between 
default and non-default customers provides valuable information for 
understanding the relationship between balance and default status. 
These findings highlight the potential significance of balance as a 
distinguishing factor in predicting and assessing the default risk 
associated with different accounts. 

Figure 1: Describe balance variable 

 

Figure 2: The histogram of income between default and non-default 
accounts 

 

The histograms provide visual representations of the income distribution 
among customers. Both charts exhibit a similar pattern, characterized by 
two peaks occurring at around 20000 and 40000. In the histogram 
representing default accounts, the income range around 30000 
constitutes only one-fourth of the area compared to that around 20000. 
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Similarly, in the histogram for non-default accounts, the corresponding 
income range also accounts for only two-thirds of the area in comparison. 
As a result, it can be concluded that there is no distinct pattern observed 
in the histograms that clearly differentiates default and non-default 
accounts. Therefore, further testing and analysis are necessary in the 
model phase to gain deeper insights and determine whether income plays 
a significant role in predicting default status. These histograms serve as a 
starting point for exploration, prompting the need for more advanced 
techniques to uncover potential relationships and dependencies between 
income and default status within the dataset. 

4.2.2 Binary Variables  

Figure 3: The proportions of Default and Student variables 

 

As can be seen in the graph, the number of default accounts is 333, which 
accounts for 3% of the total accounts. Besides, among all customers, there 
are 2944 students and 7056 of customers are not students. 

Figure 4: The histogram of income between default and non-default 
accounts 
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In terms of default customers, there are 127 students, making up 
approximately 38.14% of the total. Regarding non-default customers, out 
of 9667 customers, 2817 are students, accounting for approximately 
29.14% of the total. 

4.2  Models’ Result  

To build the model, we split the data into 2 parts in a proportion of 80/20, 
with 80% of data as training data and 20% are testing data. Splitting data 
is a fundamental step in machine learning and data analysis, allowing us 
to effectively evaluate and train models. The process involves dividing the 
available dataset into two or more subsets: a training set and a 
testing/validation set. The training set is used to train the model, enabling 
it to recognize patterns and relationships within the data. The 
testing/validation set, on the other hand, is utilized to assess the model's 
performance and generalization capabilities on unseen data. By splitting 
the data, we can simulate real-world scenarios and evaluate how well the 
model performs on new, unseen examples. It helps in identifying 
potential issues such as overfitting or underfitting. 

Figure 5: How the data is split in R-program 

 

Step 1: the function set.seed() is used to set the starting point for 
generating random numbers. When a seed value is set using set.seed(), it 
ensures that the sequence of random numbers generated remains the 
same each time the code is run with the same seed value. This can be 
useful for replicating results or creating reproducible analyses. By setting 
a seed value, controlling the randomness in functions is controlled that 
involve random number generation, such as sampling, permutation, or 
simulation. This allows the model to obtain consistent results when 
working with random processes. 

Step 2: The data is splitting into a proportion of 80/20 with a stratified 
sampling by default data. Stratified sampling is a method that ensures the 
representation of different classes or categories in the data is maintained 
proportionally across both subsets. By employing stratified sampling, the 
resulting training and testing sets reflect the overall distribution and 
characteristics of the original data, enhancing the generalizability and 
accuracy of the subsequent analyses or modeling processes. 

4.2.1 Logistic Regression 

We apply the logistic model above into the model by glm function in R:  
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Figure 6: Coefficient of logistic regression model 

 

From the result, we have the model:  

Log (
p(Default)

1−p(Default)
)  = -10.97+ 0.00000026*Income +0.0058 * Balance - 

0.0661 * Student 

It is important to note that the variable "Student" is a categorical variable 
represented by a dummy variable, where "Yes" is coded as 1 and "No" is 
coded as 0. 

Moving on to the Income variable, the coefficient is determined to be 
0.00000026, indicating a positive relationship between Income and log 
odds of Default’s probability. Specifically, for every 1 unit increase in 
Income, the log odds for probability of default also increases by 
approximately 0.000000026 units. This suggests that higher income levels 
are associated with a slightly higher likelihood of default. 

In the case of the Balance variable, the coefficient is 0.0058. This implies 
that for every 1 unit increase in the customers' Balance, the log odds for 
probability of default also increase by 0.0058 units. This coefficient 
indicates a stronger impact of Balance on the probability of default 
compared to the Income variable. 

Regarding the Student variable, the coefficient is -0.0661. This negative 
coefficient suggests that customers who are students have a log odd for 
probability of default that is approximately 0.0661 units lower than 
customers who are not students. In other words, being a student is 
associated with a reduced likelihood of default, highlighting the potential 
influence of student status as a protective factor against default. 

These coefficients provide insights into the direction and magnitude of 
the relationships between the variables and the probability of default. By 
understanding the impact of each variable, we can gain a deeper 
understanding of the factors contributing to default risk and make more 
informed decisions or interventions to manage and mitigate such risks. 
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4.2.2 Linear Discriminant Analysis (LDA) 

Figure 7: Result of LDA model 

 

First of all, the given result illustrates prior probabilities of the two groups, 
"No" (non-default) and "Yes" (default). While the proportion of non-
default accounts is reported as 0.9665, the default accounts are a 
minority, accounting for only 3.35%.  

The groups’ means provide insights into the average values of the 
predictor variables for each group. In the non-default group, the mean 
income is approximately 33524.94, the mean balance is around 806.32, 
and the proportion of students is approximately 0.294. In terms of default 
accounts, the mean income is approximately 32228.43, the mean balance 
is around 1736.67, and the proportion of students is approximately 0.377.  

From the result, we have the model:  

Default = 0.0000026*Income +0.00225 * Balance – 0.19 * Student 

The coefficients of linear discriminants play a crucial role in the 
discriminant function by assigning weights to each predictor variable. In 
this model, the coefficient for "income" is approximately 0.0000026, 
indicating a modest positive contribution to the discriminant score. On 
the other hand, the coefficient for "balance" is approximately 0.00225, 
implying a more substantial positive impact on the discriminant score. 
This suggests that "balance" carries more weight in distinguishing default 
and non-default cases. Additionally, the coefficient for the "student" 
variable is approximately -0.19, demonstrating a negative contribution to 
the discriminant score. Since "student" is represented as 1 for "yes" and 
0 for "no", the negative sign suggests that the probability of default is 
lower for the student group compared to the non-student group. 

These coefficients provide valuable insights into the relationship between 
predictor variables and the likelihood of default. The positive coefficient 
for "income" indicates that higher income levels will lead to an increased 
probability of default, while the larger positive coefficient for "balance" 
underscores its greater influence in predicting default. Conversely, the 
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negative coefficient for the "student" variable highlights that being a 
student is associated with a reduced probability of default when 
compared to non-students. These findings offer valuable guidance for 
understanding the factors that contribute to credit card default and 
inform decision-making processes aimed at managing default risks. 

4.2.3 Naïve Bayes  

Figure 8: Result of Naïve Bayes model 

 

The conditional probabilities provide valuable insights into the 
relationship between predictor variables and class labels. Specifically, 
when considering the "income" variable, we observe mean values of 
approximately 33524.94 (No) and 32228.43 (Yes). These values are 
accompanied by standard deviations of 13337.17 and 13988.62, 
respectively. This indicates the variation within each class for the 
"income" variable. 

Similarly, for the "balance" variable, the mean values are approximately 
806.3155 (No) and 1736.6716 (Yes). The standard deviations associated 
with these means are 455.7220 and 340.4504, respectively. These 
statistics shed light on the distribution and dispersion of the "balance" 
variable among the different class labels. 

Moreover, the "student" variable provides insights into the probabilities 
of being a non-student or a student within each class. For the class label 
"No," the probability of being a non-student is approximately 0.706, while 
the probability of being a student is approximately 0.294. For the class 
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label "Yes," the probability of being a non-student is approximately 0.623, 
while the probability of being a student is approximately 0.377. 

4.3 Model Evaluation 

Table 3: Metrics for comparison of the efficiency among three models  

 Accuracy Sensitivity Specificity 
Logistic Regression 0.971 0.9959 0.2754 
LDA 0.9715 0.9979 0.2319 
Naïve Bayes 0.969 0.9953 0.2319 

When comparing the results of three machine learning models for credit 
card default prediction, namely Logistic Regression, Naive Bayes, and 
Linear Discriminant Analysis (LDA), several key performance metrics were 
evaluated: accuracy, sensitivity, and specificity. 

Logistic Regression, referred to as Model 1, attained an accuracy of 0.971, 
denoting its capability to accurately classify 97.1% of the dataset. The 
sensitivity, a measure of the model's proficiency in correctly recognizing 
non-default accounts, was notably high at 0.9959, indicating its accurate 
prediction of 99.59% of the true non-default cases. However, the 
specificity score of 0.2754 suggests a relatively diminished capacity to 
precisely identify default accounts. 

Model 2, LDA, achieved an accuracy of 0.9715, which is comparable to the 
other models. The sensitivity score of 0.9979 indicates that it accurately 
predicted 99.79% of the true non-default cases. However, similar to the 
Naive Bayes model, the specificity score of 0.2319 suggests a lower ability 
to correctly identify default accounts. 

Model 3, Naive Bayes, demonstrated a slightly lower accuracy of 0.969, 
indicating a classification accuracy of 96.9%. The sensitivity score of 
0.9953 suggests that it accurately predicted 99.53% of the true non-
default cases. However, the specificity score of 0.2319 implies that it had 
a lower ability to correctly identify default accounts. 

When comparing the results, all three models exhibit similar accuracy 
levels, ranging from 0.969 to 0.9715. This suggests that they are all 
reasonably effective in correctly classifying the majority of the cases. 
However, the sensitivity and specificity scores reveal some differences in 
their performance. 

In terms of sensitivity, all three models achieved high scores, ranging from 
0.9953 to 0.9979, indicating a strong ability to identify true non-default 
cases. However, when considering specificity, both the Naive Bayes and 
LDA models exhibit lower scores of 0.2319, indicating a relatively weaker 
ability to accurately identify default accounts. This means that these 
models are more likely to misclassify default accounts as non-default, 
leading to weak alarms for interventions. On the other hand, the Logistic 
Regression model demonstrates a higher specificity score of 0.2754, 
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suggesting a comparatively better ability to correctly classify default 
accounts. This indicates a reduced likelihood of more accurate 
identification of customers who are likely to default on their credit card 
payments. 

In summary, while all three models performed reasonably well in terms 
of accuracy and sensitivity, the Logistic Regression model appears to have 
a slight advantage in terms of specificity.  

Robustness  

Due to the imbalanced dataset, the performance of specificity compared 
to other metrics is dramatically lower. Worse performance of specificity 
means that the financial institutions fail to forecast the accounts which 
are likely to default. When the model fails to detect default customers, it 
can expose the lender to higher risks of financial losses and increased bad 
debt. Besides, this weakness of the model can also negatively impact the 
financial institution's portfolio management and overall risk assessment. 
Undetected default risks can lead to a skewed risk profile, potentially 
affecting the institution's overall financial stability. 

Based on the financial instructions’ risk tolerance, we will have the 
desired objective. In our case, without any specific goals, we will justify 
the threshold and use Synthetic Minority Oversampling Technique 
(SMOTE) to tune the model. 

5.1 Threshold Modification 

Table 4: Models’ threshold justification 

Threshold Algorithms Accuracy Sensitivity Specificity 
Prob > 0.5 
assigned as 
default 

Logistic Regression 0.971 0.9959 0.2754 
LDA 0.9715 0.9979 0.2319 
Naïve Bayes 0.969 0.9953 0.2319 

Prob > 0.4 
assigned as 
default 

Logistic Regression 0.9725 0.9933 0.3913 
LDA 0.9715 0.9959 0.2899 
Naïve Bayes 0.966 0.9891 0.3188 

Prob > 0.3 
assigned as 
default 

Logistic Regression 0.969 0.9871 0.4638 
LDA 0.9715 0.9907 0.4348 
Naïve Bayes 0.9615 0.9793 0.4638 

Table 4 presents the performance metrics of three different machine 
learning algorithms (Logistic Regression, Linear Discriminant Analysis - 
LDA, and Naïve Bayes) for credit card default prediction at different 
probability thresholds. Each row of the table corresponds to a specific 
threshold value, and the columns represent the algorithms' accuracy, 
sensitivity (true positive rate), and specificity (true negative rate) at that 
threshold. 
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As the threshold is lowered, moving from 0.5 to 0.4, the models' accuracy 
tends to increase slightly. This is because lowering the threshold allows 
the models to classify more instances as default, increasing true positives 
and reducing false negatives. Consequently, specificity also increases for 
all algorithms, indicating a better ability to correctly detect default 
accounts. However, this improvement in specificity comes at the cost of 
a decrease in sensitivity, as more instances are now classified as default, 
leading to a higher number of false negative.  

In the context of logistic regression, we observed that reducing the 
probability threshold from 0.5 to 0.4 significantly improved the overall 
model performance. At the threshold of 0.4, the accuracy of the model 
increased substantially, reaching 97.25%. Although there was a slight 
decrease in sensitivity from 99.59% to 99.33%, the specificity showed a 
remarkable improvement, rising from 27.54% to 39.19%. This 
enhancement in specificity suggests that the model became more adept 
at correctly identifying non-default accounts, making it the most effective 
model overall. On the other hand, the performance of the Linear 
Discriminant Analysis (LDA) model remained consistent across different 
probability thresholds. Lowering the threshold from 0.5 to 0.4 led to a 
slight decrease in sensitivity, from 99.59% to 99.07%, while specificity 
increased from 23.19% to 28.99%. Despite this improvement, the LDA 
model still lags the logistic regression model in terms of overall 
performance. In comparison, the Naïve Bayes model consistently 
demonstrated weaker performance compared to the logistic regression 
and LDA models. At a threshold of 0.4, the Naïve Bayes model achieved 
an accuracy of 96.6%, a sensitivity of 98.91%, and a specificity of 31.88%. 
These metrics suggest that the Naïve Bayes model struggles to accurately 
classify both default and non-default accounts. 

Further lowering the threshold to 0.3 results in a decrease in accuracy for 
Logistic Regression and Naïve Bayes, while LDA maintains a relatively 
stable accuracy value. At this threshold, the models classify even more 
instances as default, leading to higher specificity values, but sensitivity 
values continue to decrease. This trend is consistent across all three 
algorithms. 

In comparison among three models, when threshold equal to 0.3, LDA is 
the best model when its accuracy is stable at 0.9715 compared to the 
decrease in accuracy in both Logistic Regression at 0.969 and Naïve Bayes 
at 0.9615. Specifically, the specificity in LDA is lowest at 0.4348, with the 
least trade off to keep high sensitivity at 0.9907.  

5.2  Synthetic Minority Oversampling Technique (SMOTE) 

Table 5: SMOTE method result  
 Accuracy Sensitivity Specificity 
Logistic Regression 0.859 0.8602 0.8261 
LDA 0.832 0.8301 0.8841 
Naïve Bayes 0.836 0.8353 0.8551 
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SMOTE, standing for Synthetic Minority Oversampling Technique, is a 
versatile and widely used technique in machine learning to address 
imbalanced datasets. It is based on the intuition that by introducing 
synthetic instances to the minority class (in our case the “Yes” – default 
group is considered to be minority), the decision boundary of the classifier 
can be better learned, leading to improved classification performance. 
SMOTE utilizes the concept of k-nearest neighbors to ensure that the 
synthetic instances are plausible and representative of the minority class. 
The synthetic instances are generated by linearly interpolating the feature 
values between the minority class instance and its randomly selected 
neighbor. This interpolation ensures that the synthetic instances fall 
within the same range as the existing instances in the minority class, 
preserving the underlying data distribution. 

Table 5 demonstrates a balanced performance of three metrics when 
compared to the original models. The accuracies of the models range 
from 0.832 to 0.859, with Logistic Regression achieving the highest 
accuracy. In terms of sensitivity, Logistic Regression also outperforms the 
other models with a sensitivity index of 0.8602, while LDA and Naïve 
Bayes achieve sensitivities of 0.832 and 0.835, respectively. On the other 
hand, LDA surpasses the other two models in terms of specificity, 
achieving a value of 0.8841. This indicates that LDA is the most effective 
model in forecasting default accounts. 

Conclusion 

The prediction of an account's default status relies on three variables: 
income, balance, and student. The model indicates that both student 
status and balance exert a significant influence on default probability, 
while income does not provide sufficient evidence to reject the null 
hypothesis (suggesting it has no impact on default). Examining the 
relationships between these variables, it becomes evident that higher 
balances in accounts correspond to an increased likelihood of default risk. 
Interestingly, it is unexpected to find that customers with higher incomes 
exhibit a higher probability of default. Additionally, student customers 
appear to have a lower likelihood of default compared to non-student 
customers. These findings shed light on the intricate dynamics between 
income, balance, student status, and default probability, suggesting that 
the interplay of these factors plays a crucial role in understanding and 
predicting default behaviors in credit card accounts. Further research is 
necessary in exploring the underlying mechanisms behind these 
associations and refining the predictive models for more accurate default 
predictions. Such insights have the potential to inform credit risk 
management strategies, enabling financial institutions to make informed 
decisions and implement appropriate measures to mitigate default risks 
effectively. 
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In terms of model performance, the models exhibit a high level of 
accuracy, correctly classifying a significant portion of the observations. 
However, a deeper analysis of sensitivity and specificity metrics reveals 
additional considerations. The sensitivity metric demonstrates the 
model's effectiveness in predicting non-default accounts, with a 
remarkably high percentage of "No" values accurately classified. This 
strong performance is influenced by the imbalanced distribution of the 
dataset, where the number of non-default accounts outweighs the 
number of default accounts. While this boosts the overall accuracy, it is 
essential to acknowledge that the model's performance in detecting 
default accounts is relatively weaker. The specificity metric highlights the 
model's limitations in accurately identifying default accounts within the 
dataset. The low percentage of true "Yes" values correctly detected 
suggests room for improvement in effectively capturing default instances. 
It is crucial to address this issue to ensure that the model is reliable in 
detecting default accounts, which is of utmost importance in credit risk 
assessment. 

Recommendation  

Based on the results obtained, it is recommended to further refine and 
enhance the predictive model for credit card default prediction. While the 
model demonstrates significant predictive power, there are certain areas 
that can be improved to increase its effectiveness and reliability. 

Firstly, considering the impact of income on default prediction, although 
it does not show a significant influence in the current model, it is advisable 
to explore alternative income-related variables or consider additional 
data sources that may provide more comprehensive insights into an 
individual's financial situation. This could potentially improve the model's 
ability to capture the nuances of income and its relationship with default 
risk. 

Secondly, considering alternative machine learning algorithms that are 
known to perform well in handling imbalanced datasets, such as Random 
Forest or K-Nearest Neighbors (KNN). Additionally, fine-tune the model's 
hyperparameters through techniques like grid search or random search 
to optimize the model's performance specifically for detecting default 
accounts. 

Thirdly, to further enhance the predictive power of the model, it is 
recommended to incorporate additional predictors or features such as 
macroeconomic indicators, payment patterns, demographic information, 
etc. The inclusion of suggested relevant variables can extend the 
understanding of factors contributing to credit card default in a more 
comprehensive way. By expanding the set of predictors, the model can 
capture a wider range of influential factors and potentially improve its 
accuracy and reliability in predicting default risks. 
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Moreover, it is important to continue monitoring and evaluating the 
model's performance over time as new data becomes available. This will 
help identify any changes or trends in default patterns and ensure the 
model remains up-to-date and effective in predicting default risks 
accurately. 
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