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Abstract
The global automotive manufacturing industry's growth in
downtime reductio is substantial, valued at $3272.6 billion
USD with a 3.01% growth rate.This growth in downtime
reduction underscores the industry's commitment to
enhancing efficiency, quality, and overall productivity across its
diverse range of operations. Downtime in the braking system

assembly line can lead to utilization loss or technical
availability loss. In this context, many proactive maintenance
strategies are explored but there's limited focus on addressing
error-prone machines and utilizing Machine Learning for
predicting downtime. The objective is to prioritize downtime
reduction through error analysis, critical machine
identification, and implementing ML-based solutions.

This comprehensive research delved into the significance of
minimizing downtime in the braking system final assembly line
through meticulous data analysis, visualization techniques and
targeted interventions and then identified key issues and
achieved tangible improvements in operational efficiency. The
analysis revealed significant findings and then employed the
Pareto Principle to identify top downtime machines,
illustrating their distribution through a Pareto chart of machine
defects. Furthermore, Exceptions and Problem Areas were
identified utilizing statistical process controls, offering insights
into critical error contributors. Notably, a comprehensive
exploration of the most prominent downtime machine was
undertaken, evidenced by LCL and UCL charts and a Fishbone
Diagram detailing causal relationships. The research leverages
real-world data involving dates, machine names, and
downtime durations to develop a predictive model that aids in

proactively managing production disruptions.
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The application of RPN calculations before and after error
correction demonstrated a substantial reduction from of 432
to 75, validating the efficacy of the corrective actions. The real
time data was used to build a model that can predict when
production machines downtime might happen. This helps us
be prepared and manage any possible disruptions in
production.The outcome of the project highlights the intrinsic
link between downtime reduction and assembly line efficiency,
emphasizing the importance of data-driven interventions. This
culminated in the resolution of key issues, illustrated by the
mitigation of the PCBA Pressin machine and LVDT sensor
errors, yielding tangible reductions in downtime and notable
productivity improvements. In this direction, exploring Ai
driven predictive maintenance holds immense potential for
advancing downtime reduction strategies. Leveraging Al
algorithms to analyse live data streams from machinery and
sensors can enable the detection of patterns indicating
imminent failures and can pre-emptively prevent downtime.

Keywords: Line balancing, Machine Learning, Statistical

Analysis, Production line, Production improvement, Efficiency

1. INTRODUCTION

The contemporary automotive industry places utmost
importance on safety and operational efficiency, casting the final
assembly phase of braking systems in a pivotal role with a
market value of $3272.6 USD and a growth rate of 3.01%.
Instances of prolonged downtime during this critical stage can
trigger production bottlenecks, amplified expenses, and
potential compromises in quality. This comprehensive analysis
delves into the imperatives of curtailing downtime, its ripple
effects within the global automotive landscape, and the far-
reaching implications for society.

The Automotive industry remains a driving force in the global
economy, consistently demonstrating growth even amidst
broader economic fluctuations. This sector's steady expansion,
as indicated by data provided by the International Organization
of Motor Vehicle Manufacturers (OICA), underscores its
resilience. While innovation and quality are the cornerstones of
the automotive industry, the automotive system sector is
underpinned by three vital pillars: Competitiveness, Delivery,
and Quality.

The research focuses on a global company within the
automotive system development and manufacturing industry,
specializing in braking systems. The motivation behind this
endeavour is multifaceted, driven by considerations spanning
Market, Industry, and Societal dimensions. The core objective is
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to significantly reduce downtime within the braking system
assembly line through statistical methodologies, ultimately
bolstering the Risk Priority Number (RPN) through effective
corrective actions.

[1], [2], and [3] underscore the importance of data-driven
approaches in identifying patterns and anomalies that may lead
to downtime. These sources advocate for the utilization of real
time data streams from sensors and machines to predict and
prevent failures. By employing advanced analytics and machine
learning algorithms, manufacturers can gain insights into
equipment health and performance. Implementing proactive
maintenance strategies based on predictive analytics can lead to
timely interventions and the prevention of unexpected
breakdowns. This not only reduces downtime but also ensures
that maintenance activities are scheduled efficiently, optimizing
the utilization of resources. In the context of the research paper
at hand, titled "Analysis and Improvement of an Assembly Line
in Automotive Industry" [1],a significant literature gap emerges
within the intersection of automotive manufacturing, downtime
reduction, and assembly line optimization. While existing
literature has explored various aspects of automotive
manufacturing and assembly line improvements, a
comprehensive investigation into the precise methodologies and
strategies for reducing downtime within braking system
assembly lines remains notably underrepresented.

[4], [5], [6], [7], [8], [9], and [25] address the significance of
reliable automotive components, particularly in braking
systems. As braking systems are critical for vehicle safety,
understanding their working principles, specifications, and
control mechanisms is essential to prevent failures and
subsequent downtime. Integrating advanced technologies like
Anti-Lock Braking Systems (ABS) effectively can enhance vehicle
safety while reducing the risk of malfunctions.A significant
portion of the literature focuses on optimizing assembly line
processes to minimize idle time and bottlenecks. [11]
investigates strategies to enhance productivity in assembly lines
through effective line balancing techniques. [12] delves into
optimizing machine efficiency and workforce utilization in the
context of production lines. [13] focuses on addressing
challenges related to sequence dependent setup times to
achieve better task scheduling. [14] highlights problems and
methods associated with generalized assembly line balancing
providing a comprehensive overview. [15] propose problem
definitions and effective solutions for assembly line balancing
with variable parallel workplaces. [16] introduces a versatile
algorithm for addressing assembly line balancing challenges.
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[17] categorizes different types of assembly line balancing
problems to guide effective problem solving approaches. [18]
explores various assembly line balancing models and discusses
their appropriate applications.

[19] focuses on software development for addressing assembly
line balancing challenges in the manufacturing industry. [20]
explores assembly line balancing using simulation techniques
with a case study in the garment manufacturing sector. These
references collectively contribute to the understanding and
enhancement of assembly line processes, highlighting the
importance of balanced and optimized production lines for
improved efficiency and reduced downtimes. These sources
recognize that balanced and optimized production lines lead to
smoother workflows and reduced downtimes. By distributing
tasks evenly and strategically among  workstations,
manufacturers can prevent overburdened stations and
streamline production processes.[21], [24], [28], and [29]
emphasize the role of lean manufacturing principles in
evaluating and improving manufacturing systems. Lean practices
prioritize the elimination of waste, including excessive
downtime, by optimizing processes and resource utilization.
Metrics such as Overall Equipment Effectiveness (OEE) and
Operational

Availability are utilized to quantify production line efficiency and
identify areas for improvement. These metrics enable
manufacturers to measure the impact of downtime reduction
efforts and track progress over time.Certain references,
including [26] and [30], delve into automotive industry-specific
optimizations. Automotive assembly lines require tailored
strategies to minimize downtime and optimize production. By
standardizing and optimizing components production lines,
manufacturers can achieve better synchronization and
coordination among processes.Bhargava et al.

[39] explored the J48 algorithm's effectiveness for data mining,
while Freund and Mason [40] introduced the alternating
decision tree learning algorithm. Pandey and Sharma [41]
focused on student performance analysis and prediction
utilizing a decision tree approach, while Priyama et al. [42]
conducted a comparative analysis of decision tree classification
algorithms. Additionally, studies by Banu [45],
Jayakameswaraiah and Ramakrishna [46], and others [47-50]
extended the exploration of decision tree models across diverse
domains, such as healthcare diagnosis and optimization of
classification schemes.In concise, the literature review reveals a
multifaceted approach to downtime reduction in the
manufacturing industry. Strategies such as data-driven
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predictive maintenance, assembly line balancing, lean
manufacturing principles, industry-specific optimizations, and
the integration of reliable automotive components all contribute
to minimizing disruptions and improving productivity.
Manufacturers can benefit from a holistic understanding of
these strategies and tailor their implementations to achieve
enhanced operational efficiency and sustained competitiveness.

The extensive literature survey spanning references [1-50]
highlights a prevalent research landscape where proactive
maintenance strategies have received considerable attention.
However, a noticeable research gap emerges, as there is limited
or virtually no exploration of addressing the machine
responsible for the highest number of errors, despite its critical
role in assembly line downtime. Furthermore, the potential of
incorporating Machine Learning algorithms to predict and
preempt downtime occurrences remains largely unexplored.
This gap signifies a unique avenue for investigation, where
efforts can be directed towards not only identifying the most
error-prone machine but also harnessing predictive analytics to
enhance the efficiency and reliability of the assembly line by
minimizing unexpected downtime instances. Moreover, the
existing body of literature does not adequately encompass the
amalgamation of statistical methods and corrective actions
aimed at effectively reducing downtime in the automotive
braking system assembly lines. While certain studies have
investigated statistical techniques in manufacturing contexts,
their application to the intricate domain of braking system
assembly lines is notably lacking.

2. METHODOLOGY

In the realm of BSFA line operations, our approach encompasses
a multifaceted strategy. Firstly, we delve into comprehending
the inner workings of the machines within these lines, aiming
for a profound understanding. Concurrently, we harness the
power of data visualization, employing various plots and graphs
to gain insights from pre-processed data, thereby illuminating
trends and patterns. Furthermore, our focus sharpens on the
meticulous gathering of information, particularly pertaining to
errors that frequently disrupt operations, thereby leading to
downtime. Subsequently, we embark on a mission to pinpoint
the root causes of these disruptions, identifying which specific
machine or machines contribute most significantly to downtime
and quantifying the duration of these interruptions. Armed with
this knowledge, our quest is to engineer solutions that target
these troublesome machines, aiming to curtail downtime
effectively. Lastly, we explore the realm of Machine Learning,
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specifically employing a Decision Tree approach, to predict
downtime in advance and proactively mitigate its impact on
BSFA line operations.

Understanding about the working of machines in BSFA
lines

.

4 )
Gathering of information related to errors occurring in

the machines and downtime caused due to frequently
occurring errors

Vv

Visualize the pre-processed data using plots, graphs
etc.

U

Determine which machine(s) causes the most ]

downtime and duration of this downtime

V.

Finding a solution to resolve issues occurring to above

machine(s) so as to reduce the downtime caused

— N )

V.

Utilizing Machine Learning for Downtime Prediction in

Manufacturing

2.1 Understanding about the working of machine in BSFA lines

The final assembly of the braking system is a critical process that
ensures the safety and reliability of any vehicle. Any errors
during this process can result in significant downtime, which can
cause delays, increase costs, and negatively impact customer
satisfaction. Therefore, it is essential to focus on reducing
downtime by minimizing errors in the final assembly of the
braking system.One of the primary reasons for errors during the
final assembly process is the complexity of the braking system.
The braking system is composed of several components, each of
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which must be assembled correctly for the system to function
effectively. Additionally, the braking system must meet specific
safety standards, making it challenging to ensure that every
component is correctly installed and functioning correctly. To
overcome this complexity, manufacturers can implement
strategies to reduce errors and minimize downtime.

The BSFA Line comprises 21 machines, each serving a vital role
in the intricate process of producing electronic control units
(ECUs). These machines encompass a wide array of functions,
ranging from the initial steps of sealing and curing the ECU
housing to the final stages of testing and packaging. Beginning
with the HU Seal Dispensing and HU Oven, the process
commences with the application and curing of HU sealant to
prevent leakage. DMC & Connector Sealing machines follow,
contributing to tracking and sealing connectors effectively. The
DMC and UV Curing machines employ UV rays to cure parts,
while the Flowtest Machine assesses airflow in the membrane.
Subsequently, the assembly phase commences with Damping
Ball Assembly and Coil Assembly, where operators provide
cushioning and manually assemble coils. Coil Pressing machines
then ensure precise coil placement within the housing, followed
by Taifun Cleaning to maintain cleanliness. Spring Assembly
machines insert springs, and AOIl Housing machines
meticulously check spring presence, pin height, and
straightness. PCBA Pressing machines insert the PCB assembly,
and AOI Pin Height checks pin height uniformity. Laser Welding
machines secure the lid to the housing, and HT Oven heats the
ECU for high-temperature testing. HT Test machines assess the
ECU's functionality, and Cooling Stations bring it back to room
temperature. O-Ring Assembly adds O-rings to motor contact
pins, and Leak Test machines ensure there are no leaks. Finally,
the Packing Station marks the conclusion, placing ECUs into bins
as per standard procedures.

This diverse array of machines showcases the complexity and
precision required in ECU manufacturing, with each step playing
a crucial role in ensuring the quality and reliability of the final
product. The seamless coordination of these 21 machines is
essential to delivering high-performance electronic control units
that meet stringent industry standards and customer
expectations.

2.2Visualize the pre-processed date with plots, graph etc

Gathered data on the number of errors and downtime in
minutes for previous months in order to have an idea about the
trend of downtime caused by machines.
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By referring to Fig 2, we collected historical data encompassing
the frequency of errors and downtime durations in previous
months. This approach aims to discern the downtime trend
resulting from machine-related factors.

Month wise Line loss data

6000 1400
5436.8
1200
5000 74
1025
40118 1000
4000 3755
800
30763
3000
600
2000
400
1000
200
0 0
January February March April

B Downtime in minutes ww=Number of errors

Fig 2 Month wise Line loss Data
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Fig 3 Day wise Line loss Data

From Fig 3, we conducted a meticulous daily examination of
error occurrences and the resulting downtimes. These
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observations are translated into visual representations, allowing
for a comprehensive understanding of the patterns in errors and
associated downtimes on a daily basis.

spfduete o
Defev adei v

Fig 4 Day wise Line loss Data — Machine wise

With reference to Fig 4, we meticulously recorded the daily
losses incurred by each machine and transform this data into
graphical representations. This process facilitates a visual
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depiction of the daily machine-specific losses, aiding in the
identification of trends and variations in the downtime patterns
across different machines.

2.3 Gathering of information related to errors occurring in the
machines and downtime caused due to frequently
occurring errors

Figures 5 and 6 serve as invaluable tools for gaining deep
insights into the intricacies of machine-related downtime within
the assembly line. In Figure 5, we present a clear and concise
breakdown of the percentage contribution of each individual
machine to the overall machine loss. This detailed analysis not
only pinpoints the specific machines that significantly impact
production interruptions but also highlights the distribution of
downtime across the assembly line. Such granularity is crucial
for identifying critical sources of downtime and laying the
foundation for targeted improvement efforts.

Figure 6 takes this analysis a step further by providing a visual
representation of the consolidation of machine-related
downtime. Visualizing the data in this manner offers a holistic
perspective on the patterns and trends in downtime, making it
easier for stakeholders to grasp the overall landscape of
disruptions. This visual approach enhances our ability to identify
clusters of machines that may be susceptible to similar issues or
those that consistently operate at peak efficiency. As a result,
these figures empower decision-makers with the knowledge
needed to implement effective strategies for minimizing
downtime, optimizing production processes, and ultimately
enhancing the assembly line's overall performance and
reliability.
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HU Seal Dispensing 1 0 0 1] 0189 0.02
HU Oven 0 0 0 0] 0.000[ 0.00
PMC and connector sealin 4 2 0 133 014
DMC and UV Curing 9 10 3 1 23| 4348 046
PCE welding 25 8 3 1 37] 699% 074
Flow test 5 2 0 0 7] 1323 014
Damping ball Assembly 14 2 2 1 19/ 3592 038
Coil Assembly 5 0 1 0 6 1134 012
Coil Pressin 36 19 1B 6| 74/ 13.989| 148
Taifun Cleaning 7 8 2| 201 3781 040
Spring Assembly 28 27 8 7] 70| 13.233) 140
AOI Housing 9 1 1 1 12 2268 024
PCBA Pressin 3 1 3 9 46| 86% 092
AOI pin height 17 2 u 3| 43 8129 086
Laser Welding 1& 2 28 6 2 4 40| 7561 0.80
HT Oven 1 1 0 0 2| 0378 0.04
HT Test 16 1 9 19| 55[10397] 110
Cooling Station 4 0 3 0 7] 133] 014
0-ring Assembly 10 2 1 2| 15| 283 030
Leak Test 3 7 0 1| 31 5.860[f 062
Packing Station 8 5 1 0| 14 2647 0.28

Fig 5 Percentage Contribution in Machine Loss
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2.4 Determine which machine(s) causes the most downtime
and duration of this downtime

Statistical Analysis

Pareto Principle

e The Pareto Principle, also known as the 80/20 rule, can be applied
to identify the vital few causes of downtime in the braking
system final assembly According to this principle,
approximately 80% of the downtime is caused by 20% of the
underlying factors.

line.

e By analyzing and prioritizing these vital few causes, such as
equipment failures, material shortages, or process inefficiencies,
manufacturers can focus their efforts on the most significant
contributors to downtime.

e This allows them to allocate resources effectively, implement
targeted improvements, and achieve substantial reductions in
downtime, thereby enhancing overall productivity and efficiency
in the assembly line

Table 1 Top Downtime Machines Identified using Pareto

Principle
PCE Welding 11 HERRMANN ULTRAPLAST DIGIT 8 1301
Damping Ball Assem 3 EXTRA DAMPING BALL MOUNTED 3 1309
Laser welding 25 SAFETY --- INTE 8 1317
PCBA Pressin 13 LINETAKEN BY MAINTENANCE 8 1325
Leak Test 10 MES_DDLV ERROR 8 1333
Spring Assembly 6 AIRFLOW OVERLOAD 8 1341
PCBA Pressin 16 KO11A2-K02 _131B 7 1348
Laser Welding 3 BUBBLE MARK ON 7 1355
PCBA Pressin 1 PROGRAM LOADING ISSUE 7 1362
DMC & UV Curring 19 LASER MARKING: DISPENSER ERROR 7 1369
AQI Housing 6 LINE TAKEN BY MAINTENANCE 7 1376
PCBA Pressin 3 AO51A6 _101B3 6 1382
Laser Welding 13 HUPO NOT IN POS 6 1388
PCBA Pressin 4 DDOK721E _201B204B TESTC 6 1394
Leak Test 9 MANUAL LEAK TESTER DOWN END ] 1400
DMC & UV Curring 21 MATERIAL LEK 6 1406
PCBA Pressin 9 DIGIFORCENOK P 6 1412
Leak Test 12 SCANNED CODE HAS WRONG LENGTH 6 1418
DMC & Connector Se 2 OTHERS 5 1423
DMC & UV Curring 6 000K112C _10 5 1428
Coil Pressin 32 UNLOCK CYL MOVED IN/QUT 3 1433
Coil Pressin 33 VERTICAL UNIT IN UPPER/LOWER POSITION 5 1438
PCBA Pressin 39 PCBA PRESS IN NOK E] 1443
Laser Welding 18 MES VMDT ERROR 5 1448
Laser Welding 32 SOFTWARE_CONTUR 5 1453
HT Test 10 CODE IS NOT READABLE 3 1458
PCBA Pressin 6 UNLOADING GRIPCB 5 1463
O-Ring Assembly 1 PART NOT FOR STATION 5 1468
Coil Pressin 31 THE HEIDEHEIN COMPENSATE VALUE IS NOT RIGHT 5 1473
PCE Welding 15 NOK- DAENOTINC 4 1477
Damping ball assem| 15 STAS0A DAMPING ELEMENT LOW 4 1481
Coil Assembly 10 OTHERS 4 1485
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Table 1 showcases the outcome of applying the Pareto Principle
to pinpoint the key contributors to downtime. This image
displays the top downtime machines, which were identified by
analyzing data and categorizing the vital few causes. By
leveraging this visual insight, we can readily grasp the critical
machines that demand immediate attention and allocate
resources for targeted improvements. This representation not
only facilitates effective decision-making but also aids in
fostering a proactive approach to maintenance and optimization
within the assembly line.

PARETO CHART - MACHINE
DEFECTS

IEVINIDHI4ANLEININAD
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0%

Cumulative %
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PARETO CHART - MACHINE DEFECTS
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Fig 8 Pareto Chart of Machine Defects
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The Pareto chart analysis shows the most significant downtime
causes in descending order of frequency. By addressing the top
few causes, we can potentially reduce a substantial portion of
the downtime. Focusing on these critical issues will lead to more
efficient allocation of resources and efforts, ultimately leading to
a significant reduction in overall downtime and improved
productivity in the process.

Error [Defect Description Count |Cumulative
Mo
10 |D5-SPRING POS a3 a3
12 HT-TEST PART FAILING 60 143
14  |WORK PIECE CARRRIER &0 203
ERROR
2 [DIGIFORCE NOK - C 33 236
16 [ESD-SPRING MOT 30 306
ARRIVED OM PART
3 COIL LIFTED 47 353
1 WPC MOVEMENT 45 358
10 [NO RESULT FOUND 43 441
11 |FAULT CCS5 RESET 35 430
6 LEAK TEST FAILURE 32 512
4 CONVEYOR MOWVEMENT 30 342
ERROR
10 [HANG 25 571
17 [K011A3-K02 131B 25 600

Table 2 Defects causing most downtime

Statistical Process Control (LCL& UCL)

e The Lower Control Limit (LCL) and Upper Control Limit (UCL) are
statistical boundaries used in Statistical Process Control (SPC) to
identify abnormal variations in a process.

e The LCL represents the lower boundary below which data points
are considered unusual or abnormal. When data points fall
below the LCL, it suggests that the process is experiencing some
form of issue or variation that is affecting its performance
negatively.

e On the other hand, the UCL represents the upper boundary above
which data points are considered unusual or abnormal. Data
points exceeding the UCL indicate that the process is performing
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at a higher level than expected or experiencing some form of
variation that is potentially impacting its performance positively.

e \When monitoring a process, any data points falling outside the
control limits (either above the UCL or below the LCL) indicate
the presence of special cause variation or assignable causes.
These data points signal that the process is operating in an
unpredictable or out-of-control manner and require
investigation and corrective action to address the underlying
issues.

Table 3 Exceptions and Problem Areas by LCL and UCL Analysis

L£TUUTLULY FLUA FITI3N LA unLL nun - L 1 1304 110.3030£3U] T4 3.0I401UL
13-06-2023 PCBA Pressin DIGIFORCE NOK-C 8 1952 1189358256  -79.89431613
14-06-2023 PCBA Pressin DIGIFORCE NOK-C 358 1952 1189358256 -79.89431613
15-06-2023 PCBA Pressin DIGIFORCE NOK - C 151 1952 1189358256 -79.89431613
17-06-2023 PCBA Pressin DIGIFQRCE NOK - C 2 1952 1180358256 -79.89431613
18-06-2023 PCBA Pressin DIGIFORCE NOK-C 57 1852 1189358256 -79.89431613
02-06-2023 PCBA Pressin DIGIFORCE NOK - COILPIN 1 0.65 17 04
03-06-2023 PCBA Pressin DIGIFORCE NOK - COILPIN 03 0.65 17 04
24-04-2023 PCBA Pressin DIGIFORCE NOK P 03 145 4017586415 -1.117586415
25-04-2023 PCBA Pressin DIGIFORCE NOK P 03 145 4017586415 -1.117586415
27-04-2023 PCBA Pressin DIGIFQRCE NOK P 15 145 4017586415 -1.117586415
12-05-2023 PCBA Pressin DIGIFQRCE NOK P 2 145 4017586415 -1.117586415
15-05-2023 PCBA Pressin DIGIFORCE NOK P 13 145 4017586415 -1.117586415
25-05-2023 PCBA Pressin DIGIFORCE NOK P 13 145 4017586415 -1.117586415
03-06-2023 PCBA Pressin DIGIFORCE NOK PSEUDO FAILURE 75 750 75 75
07-04-2023 PCBA Pressin ENGAGE CYL FORCE PICK UP MOVED UP 1 125 2 05
07-04-2023 PCBA Pressin ENGAGE CYL FORCE PICK UP MOVED UP 15 125 2 05
03-04-2023 PCBA Pressin GRIPCE PRESSINER 1 6.10 47.88527728 -35.69527718
11-04-2023 PCBA Pressin GRIPCBE PRESSINER 4 6.10| 4788527728 -35.68527718
15-04-2023 PCBA Pressin GRIPCE PRESSINER 2 6.10) 4788527728 -35.68527728
21-04-2023 PCBA Pressin GRIPCE PRESSINER 1 6.10) 4788527728 -35.68527728
26-04-2023 PCBA Pressin GRIPCE PRESSINER 6.2 6.10 47.88527728  -35.69527728
27-04-2023 PCBA Pressin GRIPCE PRESSINER 7 6.10 47.88527728  -35.69527728
28-04-2023 PCBA Pressin GRIPCE PRESSINER 3 6.10| 4788527728 -35.68527718
04-05-2023 PCBA Pressin GRIPCBE PRESSINER 07 6.10| 4788527728 -35.68527718
05-05-2023 PCBA Pressin GRIPCE PRESSINER 65 6.10) 4788527728 -35.68527728
09-05-2023 PCBA Pressin GRIPCE PRESSINER 45 6.10) 4788527728 -35.68527728
16-05-2023 PCBA Pressin GRIPCE PRESSINER 1 6.10 47.88527728  -35.69527728
16-05-2023 PCBA Pressin GRIPCE PRESSINER 13 6.10 47.88527728  -35.69527728
17-05-2023 PCBA Pressin GRIPCE PRESSINER 1 6.10| 4788527728 -35.68527718
17-05-2023 PCBA Pressin GRIPCBE PRESSINER 3 6.10| 4788527728 -35.68527718
29-05-2023 PCBA Pressin GRIPCB PRESSINER 1 6.10| 47.88527728  -35.68527728
11-06-2023 PCBA Pressin GRIPCE PRESSINER 8 6.10) 4788527728 -35.68527728
12-06-2023 PCBA Pressin GRIPCE PRESSINER 25 6.10/ 47.88527728| -35.69527728

The LCL and UCL analysis revealed an abnormal pattern in the
case of LVDT Sensor defect compared to other defects. This
indicates that the LVDT sensor defect plays a significant role in
the downtime. As the sensor's performance has a pronounced
impact on product quality and downtime, it is crucial to conduct
a comprehensive analysis of the LVDT sensor.
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Downtime Mean ucCL LCL

by

VDT sensor

1 17.67 158.0141 -122.674
4.4 17.67 158.0141 -122.674
1.6 17.67 158.0141 -122.674
0.5 17.67 158.0141 -122.674
3.3 17.67 158.0141 -122.674
0.8 17.67 158.0141 -122.674
3.2 17.67 158.0141 -122.674
0.3 17.67 158.0141 -122.674
165.4 17.67 158.0141 -122.674
0.3 17.67 158.0141 -122.674
a.1 17.67 158.0141 -122.674

Table 4 Downtime Caused due to LVDT Error

Further investigation will help identify the root causes of the
deviation and implement targeted corrective actions to improve
the sensor's accuracy and stability. This analysis will ultimately
enhance the overall process performance and ensure consistent

and reliable production results.
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Fig 9 Problem Area Identified by LCL and UCL Analysis — LVDT
Sensor Error from PCBA Pressin Machine
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Fig 9 illustrates the pivotal findings extracted from the Lower
Control Limit (LCL) and Upper Control Limit (UCL) analysis,
shedding light on a notable problem area within the assembly
line. This chart serves as a graphic testament to the power of
data-driven insights, offering a tangible depiction of the
deviation detected in the LVDT sensor, a crucial component of
the PCBA pressin machine. The chart's placement within the
report underscores its significance, presenting a concise yet
impactful narrative of how the LCL and UCL analysis has
identified the LVDT sensor error as a focal point for investigation
and improvement. As a pivotal point of reference, this chart
encapsulates the essence of the anomaly, setting the stage for
the subsequent analysis and strategies that seek to address this
pivotal concern and optimize the assembly line's performance.

Downtime
caused b
s sens“;r Mean ucL LCL
error (in ms)
1 17.67 158.0141 -122.674
4.4 17.67 158.0141 -122.674
1.6 17.67 158.0141 -122.674
0.5 17.67 158.0141 -122.674
3.8 17.67 158.0141 -122.674
0.8 17.67 158.0141 -122.674
3 2 17.67 158.0141 -122.674
17.67 158.0141 -122.674
———_
17.67 158.0141 -122.674
4.1 17.67 158.0141 -122.674

Fig 10 Highlighting the main downtime caused due to LVDT
sensor

In Fig 10, a detailed breakdown emerges, showcasing the direct
impact of the LVDT sensor error on the assembly line's
operational efficiency. This figure not only enumerates the
instances of downtime, meticulously quantified in milliseconds,
but also unveils key statistical indicators that provide crucial
context. The Mean value serves as a central reference point,
encapsulating the average downtime caused by the LVDT sensor
error. Complementing this, the Upper Control Limit (UCL) and
Lower Control Limit (LCL) derived values establish the
boundaries within which the variations in downtime are
expected to operate. This encapsulation of data within the
defined control limits underscores the meticulous approach
taken to assess the error's significance. The figure thus emerges
as a dynamic snapshot that bridges the gap between raw data
and actionable insights. By presenting a comprehensive view of
both the magnitude of downtime and its statistical dimensions,
Fig 10 not only underscores the immediate consequences of the
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LVDT sensor error but also lays the groundwork for targeted
interventions and improvements that aim to rectify the anomaly

and optimize the assembly line's overall performance.

2.5 Finding a solution to resolve issues occurring to above

machine(s) so as to reduce the downtime caused
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Fig 11 Fishbone Diagram of Cause And Effect Of Downtime Of

PCBA Pressing Machine Due to LVDT Sensor Error
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Fig 11 unveils a potent visual representation in the form of a
Fishbone Diagram, meticulously dissecting the intricate cause
and-effect relationships that underlie the downtime of the PCBA
pressing machine attributed to the LVDT sensor error. This
diagram serves as an insightful roadmap, leading stakeholders
on a journey to unearth the root causes that contribute to this
specific challenge.

RPN

Risk Priority Number (RPN) is a quantitative method used in risk
assessment and prioritization to identify and prioritize potential
risks based on their severity, occurrence, and detectability. The
RPN is calculated by multiplying the Severity, Occurrence, and
Detection scores of a risk. The formula for calculating RPN is as
follows:

RPN = Severity (S) x Occurrence (O) x Detection (D)

Each factor is usually rated on a scale from 1 to 10, with 1 being
the lowest impact or probability, and 10 being the highest. A
higher RPN indicates a higher priority risk that requires more
attention and mitigation efforts.

RPN Before Corrective Action

RPN=8%*9 *6=432

ERROR
/ Vchine anua \ Machine Mamual
Machine Drawing BOM Machinz Drawing BOM
Part Detals {Spec & Dimensions}  Components & Materials, Quantities FartDetals [Spec & Dimensions) Componens & Materias, Quantities
Place Order Place Order
Spare Recetved S_aaﬁ‘Re::md
Replace 1f Breakdown Reglace 1f Breakdowa

\ Reorder j Reorder

Fig 12 Root Cause Analysis for LVDT Sensor Error
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Corrective Actions

*  Physical Verification of Machine along with part drawing
and Bill Of Materials (BOM)

*  Any BOM Change or Drawing Change needs to be taken care
before MAE dispatch

* Implement a robust document control system to manage
part drawings, BOMs, and any changes effectively. Ensure
that all revisions are properly documented and
communicated to relevant stakeholders.

*  Ensure that all operators are properly trained and certified
to operate the machine to prevent errors and mishandling.

*  Establish a preventive maintenance program that includes
routine inspections, cleaning, and servicing to prevent
unexpected breakdowns and prolong the machine's
lifespan.

RPN After Corrective Action

RPN=3*5*5=75

2.6 Utilizing Machine Learning for Downtime Prediction in
Manufacturing: A Decision Tree Approach

In the realm of modern manufacturing, downtime is a significant
concern, impacting productivity, efficiency, and overall
profitability. The ability to predict and prevent machine
downtime has become increasingly crucial. This project presents
a comprehensive study on the application of machine learning,
specifically the Decision Tree algorithm, to predict machine
downtime in a manufacturing setting. The research leverages
real-world data involving dates, machine names, and downtime
durations to develop a predictive model that aids in proactively
managing production disruptions.

The research methodology involves several key steps:

1.Data Collection: Gathered historical data for the past 2.5 (April
— June Mid) months that includes the following columns:

* Date: The date when the downtime occurred was recorded.

e Machine Name: The name of the machine for which error
occurred

e Error: Error code

¢ Downtime: The duration of downtime in minutes
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2. Feature Extraction: From the raw data, derived relevant
features that could potentially influence the occurrence of
an error and downtime. These features include:

¢ Converting the downtime values to integer

¢ Error: Added the count of specific errors occurred on a day in
a machine.

2. Data Transformation: Transform categorical variables like
“Date" and “Machine Name" into numerical format using
techniques like LabelEncoder.

3. Data Splitting: Split the data into a training set and a testing
set. Used 85% of random picked data for training and the
remaining 15% data for testing. Model Training and Validation:
The dataset was split into training and testing subsets. The
Decision Tree model was trained on the training subset and
evaluated on the testing subset using appropriate performance
metrics, such as accuracy, precision, recall, and F1-score.

Modeling

Decision Tree Algorithm: Trained the model using the training
dataset. The binary outcome variable will be whether a machine
will be down (1 for down, 0 for machine in running condition),
and the predictor variables will include the derived features.

Python Program

from google.colab

import files %matplotlib inline
import numpy

import io from pandas

import read_excel

import matplotlib.pyplot as plt from matplotlib.pyplot import

pie, axis, show

import pandas as pd from pandas.plotting
import scatter_matrix from numpy
import array from numpy

import argmax from sklearn.compose

3580



Journal of Namibian Studies, 35 S1 (2023): 3560-3592 ISSN: 2197-5523 (online)

import make_column_transformer from sklearn.preprocessing
import RobustScaler from sklearn.preprocessing
import LabelEncoder from sklearn.preprocessing
import OneHotEncoder from sklearn.model_selection
import train_test_split from sklearn

import svm from sklearn.neural_network

import MLPClassifier from sklearn

import tree from sklearn.linear_model

import LogisticRegression from sklearn.linear_model
import LogisticRegressionCV from sklearn.svm

import SVR from sklearn.svm

import NuSVR from sklearn.preprocessing

import StandardScaler from sklearn.svm

import SVC from sklearn.svm

import NuSVC from sklearn

import linear_model from sklearn.linear_model
import SGDClassifier from sklearn.pipeline

import make_pipeline from sklearn.metrics

import accuracy_score from sklearn.metrics

import confusion_matrix from sklearn.metrics

import classification_report

import warnings warnings.filterwarnings('ignore')

uploaded = files.upload() df = read_excel('DowntimeData.xIsx')

df = df.drop(

['Unnamed: 4','Unnamed: 5','Unnamed: 6','Unnamed: 7'],axis=1)

print(df)
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print(df["Date"].value_counts()) print('\n',
df["Machine"].value_counts()) print("\n', df["Downtime in

mins"].value_counts())

categorical = [var for var in df.columns if df[var].dtype=="'0']
print('There are {} categorical

variables\n'.format(len(categorical)))

print('The categorical variables are :', categorical) numerical =
[var for var in df.columns if df[var].dtype!='0'] print(‘There are {}
numerical variables\n'.format(len(numerical))) print('The

numerical variables are :', numerical)

print(df.head()) label_encoder = LabelEncoder() df['Machine'] =
label_encoder.fit_transform(array(df['Machine'])) df['Date'] =
df['Date'].values.astype("float64") print(df['Date']) print(df)

X = df.drop(['Error'], axis=1) y = df['Downtime in mins']

X_train, X_test, y_train, y_test = train_test_split(X, vy, test_size =
0.15, random_state = 42) print(X_train.shape, X_test.shape)

print(X_train, X_test) dct = tree.DecisionTreeClassifier()

dct.fit(X_train, y_train) y_pred = dct.predict(X_test)

print('Model accuracy score: {0:0.4f}'.
format(accuracy_score(y_test, y_pred))) y_pred_train =
dct.predict(X_train) print('Training-set accuracy score:
{0:0.4f}. format(accuracy_score(y_train, y_pred_train)))

print('Training set score: {:.4f} .format(dct.score(X_train,
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y_train))) print('Test set score:

{:.4f}' .format(dct.score(X_test, y_test))) cm =

confusion_matrix(y_test, y_pred)

cm_df = pd.DataFrame(cm)

print(classification_report(y_test, y_pred))

print('***************************************I)

The code begins with importing necessary libraries and
modules. These include libraries for data manipulation (NumPy;,
pandas), data visualization (matplotlib), machine learning
algorithms (scikit-learn), and warnings handling. The code
uploads the Excel file 'DowntimeData.xlsx' using the
files.upload() function and reads its content into a pandas
DataFrame named df. Label Encoding is applied to the
"Machine" column to convert categorical values into numerical
labels. Additionally, the "Date" column is converted to float64
data type. The updated DataFrame is printed to show the
changes. Features (X) and the target variable (y) are separated.
The dataset is split into training and testing sets using the
train_test_split() function. An instance of DecisionTreeClassifier
(dct) is created. The model is trained on the training data using
the fit() method. Predictions are made on the testing set using
predict(). The confusion matrix is computed and converted to a
DataFrame  (cm_df)  for  better  visualization.  The
classification_report()function generates a detailed classification
report including precision, recall, F1-score, and support metrics
for each class. This Python code demonstrates the complete
process of preprocessing data, training a Decision Tree Classifier,
evaluating the model's performance, and providing valuable
insights for downtime prediction in  manufacturing
processes.The results of the predictive model were promising.
The Decision Tree algorithm exhibited a high accuracy rate in
predicting machine downtime. Precision, recall, and Fl-score
metrics further indicated the model's effectiveness in
distinguishing between downtime and normal operational
periods. This suggests that the model can reliably identify
situations where machine downtime is likely to occur.
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3. RESULTS AND DISCUSSIONS

The primary focus of this research is to address the challenge of
downtime reduction in the braking system’s final assembly line
within the context of the automotive industry. The study
emphasizes the importance of continuous improvement and
process optimization to enhance global competitiveness and
technological innovation.
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The study starts by acknowledging the competitive nature of the
automotive manufacturing sector, particularly in the Anti-lock
Braking System (ABS) domain. It highlights the significance of
fostering a culture of perpetual enhancement, both economically
and technologically. By pursuing process optimization, increased
efficiency, and waste reduction, organizations can not only
enhance their economic standing but also bolster their
technological advancements.

The specific problem tackled in the research revolves around
downtime occurring in the braking system's final assembly line.
The study identifies that frequent errors lead to utilization loss
or technical availability loss, impacting the overall efficiency of
the assembly line. The objective is to understand these errors,
their root causes, and subsequently devise effective solutions to
minimize downtime and enhance productivity.

To address this objective, the study undertakes a comprehensive
methodology, starting with data collection and analysis. Various
visualization tools such as plots and graphs are employed to
analyze the trend of downtime caused by machines. Day-wise
and machine-wise analysis is conducted to delve into the
nuances of downtime occurrences.

Through statistical analysis techniques, the study identifies key
machines causing significant downtime. The Pareto Principle,
known as the 80/20 rule, is applied to prioritize the vital few
causes of downtime. This allows for targeted efforts towards
mitigating the most significant contributors to downtime. By
focusing on these high-impact factors, manufacturers can
effectively allocate resources and reduce overall downtime.

Additionally, the study employs Statistical Process Control (SPC)
tools, particularly the Lower Control Limit (LCL) and Upper
Control Limit (UCL) analysis, to identify abnormal variations in
the process. This analysis identifies exceptions and problem
areas, highlighting specific aspects that require attention and
corrective action.

A significant focus of the study is on the LVDT Sensor error, a
recurring issue causing downtime in the PCBA Pressing machine.
The study provides a detailed breakdown of the downtime
caused by this error and presents a fishbone diagram to visually
represent the cause and effect relationship. The study then
outlines corrective actions to address this issue, including
physical verification of the machine, implementing a robust
document control system, ensuring operator training, and
establishing a preventive maintenance program.
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The outcomes of these efforts are reflected in the reduction of
the Risk Priority Number (RPN), a quantitative measure of risk
assessment. The RPN before corrective action was calculated to
be 432,which is significantly reduced to 75 after the
implementation of corrective actions. This reduction signifies
the success of the targeted interventions in mitigating risks and
improving the operational framework.

The research leveraged real-world data involving dates, machine
names, and downtime durations to develop a predictive model
that aids in proactively managing production disruptions.

Focus of Downtime Reduction in Braking
Research System's Final Assembly Line
Importance Enhancing Global Competitiveness

and Technological Innovation

Industry Context | Automotive Manufacturing Sector,
particularly ABS domain

Key Emphasis Continuous Improvement, Process
Optimization, Efficiency

Specific Problem | Frequent Errors Leading to
Utilization Loss and Inefficiency

Methodology Data Collection, Analysis,
Visualization, Statistical Analysis

Tools Used Plots, Graphs, Pareto Principle,
Statistical Process Control

Focus Area VDT Sensor Error in PCBA Pressing
Machine

Corrective Machine Verification, Document

Actions Control, Operator Training,
Praventive
Maintenance

Outcome Reduction in Risk Priority Number
(RPN} from 432 to 75

Data Utilization Leveraging Real-World Data for
Predictive Model Development

Achievements Tangible Downtime Reduction,
Enhanced Productivity

Contributionto | Optimization of Automotive

Industry Assembly Line Processes

Table 5 Summary of Research Focus and Key Findings
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In essence, the research successfully identifies and addresses
the challenge of downtime reduction in the braking system's
final assembly line. By employing a systematic methodology,
including statistical analysis and targeted corrective actions, ML
based solutions, the study achieves a tangible reduction in
downtime, thereby enhancing overall productivity and efficiency
within the automotive system sector. The research serves as a
valuable contribution to the optimization of assembly line
processes in the automotive industry.

4. CONCLUSION AND FUTURE SCOPE

In this research paper, our primary objectives revolved around
recognizing the criticality of minimizing downtime in the braking
system final assembly line, compiling a thorough dataset of
errors and corresponding downtimes, employing data
visualization techniques, utilizing Pareto analysis and LCL UCL
statistical analysis to pinpoint prominent sources of downtime,
and, most importantly, devising practical solutions to curtail
machine-specific downtimes and enhance overall productivity.

The journey through this project has underscored the pivotal
role that reducing downtime plays in optimizing the efficiency
and effectiveness of the braking system final assembly line.
Through meticulous data collection, we gained an in-depth
comprehension of errors and their associated downtimes, thus
establishing a solid foundation for targeted interventions.

The application of diverse data visualization tools allowed us to
extract meaningful insights from the collected data, making
trends and patterns readily understandable. The strategic use of
Pareto analysis and LCL UCL statistical analysis effectively
illuminated the specific machines responsible for a significant
portion of the downtime, thereby guiding our focus toward the
most impactful contributors.

The culmination of our efforts resulted in the identification and
resolution of key issues affecting productivity. Notably, the PCBA
Pressin machine error emerged as a notable source of
downtime, and the LVDT sensor error emerged as a major
disruptor. By replacing the 10 mm LVDT sensor with a more
appropriate 25 mm specification, we effectively addressed the
problem, resulting in a tangible reduction in downtime and an
enhancement in productivity.The research leverages real-world
data involving dates, machine names, and downtime durations
to develop a predictive model that aids in proactively managing
production disruptions.

In closing, this paper serves as a testament to the symbiotic
relationship between downtime reduction and operational
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efficiency within the complex context of the braking system final
assembly line. Our meticulous analysis and targeted
interventions have illuminated a path toward sustained
improvement, underscoring the potential for data-driven
strategies to enhance manufacturing processes. As industry
dynamics continue to evolve, the insights gleaned and solutions
implemented through this project will remain invaluable tools
for achieving operational excellence and maintaining a
competitive edge.

In the realm of future project scope, the integration of Ai
powered predictive maintenance emerges as a pivotal
advancement. This entails the implementation of sophisticated
Al algorithms for real-time monitoring and immediate alerts
pertaining to machine health within the manufacturing process.
By harnessing the power of artificial intelligence, this forward
looking approach can continuously scrutinize data streams from
the machinery, swiftly identifying anomalies or discerning
patterns that might signify impending failures. When such
deviations are detected, the system can automatically generate
alerts, promptly notifying maintenance teams. This proactive
intervention capability not only minimizes downtime but also
optimizes resource allocation by ensuring that maintenance
efforts are directed precisely where and when they are needed,
ultimately enhancing operational efficiency and productivity in
the manufacturing sector.
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