Normal Spaces Associated With P*Gb-Open Sets

Aruna Glory Sudha. I*, Dr. S. Zion Chella Ruth[†]

*Aruna Glory Sudha. I, Research Scholar, Registration
Number: 21212152092002, Department of Mathematics,
Nazareth Margoschis College at Pillaiyanmanai, Nazareth,
Affiliated to Manonmaniam Sundaranar University,
Abishekapatti, Tirunelveli-627 012, Tamilnadu,
India. e-mail: sudhaagers@gmail.com.

† Dr. S. Zion Chella Ruth, Assistant Professor, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth, Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

> Tirunelveli-627 012, Tamilnadu, India. e-mail: ruthalwin@gmail.com.

Abstract

We present and explore pre-star generalized b-normal spaces and their stronger and weaker form spaces utilizing the paradigm of pre-star generalized b-closed and pre-star generalized b-open sets.

Keywords: p*gb-open, p*gb-closed, p*gb-normal, strongly p*gb-normal, weakly p*gb-normal.

1. INTRODUCTION

Pre*-closed sets were presented and some of their characteristics were studied by T. Selvi and A. Punitha Dharani [3] in 2012. Pre*-generalized b-closed and b-open set characteristics are provided in [4]. The pre* generalized b-normal and strongly p*gb-normal and weakly p*gb-normal spaces that we describe and investigate in this work make use of p*gb-open and p*gb-closed sets, respectively.

2. PRELIMINARIES

Definition 2.1.[1] In X, A subset M is called

- (i)b-open if M⊆Int (Cl(M))∪Cl (Int(M))
- (ii)b-closed if Int $(Cl(M))\cap Cl$ $(Int(M))\subseteq M$.

Definition 2.2.[1] b-closure of A, denoted by $bCl(A)= \cap \{H: A\subseteq H \text{ and } H \text{ is b-closed}\}.$

Definition 2.3. [3] A subset M of the space X is called

- (i) pre*-open if $M \subset int^*(Cl(M))$
- (ii) pre*-closed if $Cl*(Int(M)) \subseteq M$.

Definition 2.4.[4] A pre* generalized b-closed set (briefly, p*gb-closed) is a subset A of a Space (X, τ) if $bCl(A) \subseteq U$, whenever $A \subseteq U$, U is pre*-open in (X, τ) .

Lemma 2.5.[4] For a topological space (X,τ) , Every open set is p*gb-open.

Lemma 2.6. [4]

- (a) Arbitrary intersection of p*gb-closed sets is p*gb-closed.
- (b) Arbitrary union of p*gb-open sets is p*gb-open.

Remark 2.7.[4]

- (a) The union of p*gb-closed sets need not be a p*gb-closed set.
- (b) The intersection of p*gb-open sets is p*gb-open.

Definition 2.8.[4] Let X be a topological space and let xof X A subset N of X is said to be a p*gb-neighbourhood (shortly, p*gb-nbhd) of x if there exists a p*gb-open set U such that $x \in U \subseteq N$.

Theorem 2.9.[4] Every nbhd N of $x \in X$ is a p*gb-nbhd of x.

Definition 2.10.[4] Let A be a subset of a topological space (X, τ) . Then the union of all p*gb-open sets contained in A is called the p*gb-interior of A and it is denoted by p*gbInt(A). That is, p*gbInt(A)=U{V:V \subseteq A and V \in p*gb-O(X)}.

Theorem 2.11.[4] Let A be a subset of a topological space (X, τ) . Then

(a) p*gbInt(A) is the largest p*gb-open set contained in A.

- (b) A is p*gb-open if and only if p*gbInt(A)=A.
- (c) $p*gbInt(\phi)=\phi$ and p*gbInt(X)=X.
- (d) If $A \subseteq B$, then $p*gbInt(A) \subseteq p*gbInt(B)$.
- (e) p*gbInt(p*gbInt(A))=p*gbInt(A).

Definition 2.12.[4] Let A be a subset of a topological space (X, τ) . Then the intersection of all p*gb-closed sets in X containing A is called the p*gb-closure of A and it is denoted by p*gbCl(A). That is, p*gbCl(A)= \cap {F: A \subseteq F and F \in p*gb-C(X)}. The intersection of the p*gb-closed set is p*gb-closed, then p*gbCl(A) is p*gb-closed.

Theorem 2.13.[4] Let A be a subset of a topological space (X, τ) . Then

- (a) p*gbCl(A) is the smallest p*gb-closed set containing A.
- (b) A is p*gb-closed if and only if p*gbCl(A)=A.
- (c) $p*gbCl(\phi)=\phi$ and p*gbCl(X)=X.
- (d) If $A\subseteq B$, then $p*gbCl(A)\subseteq p*gbCl(B)$.
- (e) p*gbCl(p*gbCl(A))=p*gbCl(A).

Definition 2.14[5]. A topological space X is quasi-H-closed if every open cover has a finite proximate subcover. That is, every open cover has a finite subfamily whose closures cover the space.

Definition 2.15[5]. A topological space (X,τ) is said to be **normal** if, for disjoint closed sets A and B, there exist disjoint open sets U and V such that $A\subseteq U$, $B\subseteq V$.

3. p*gb-normal spaces

Definition 3.1. A topological space (X, τ) is said to be p*gb-normal if for any two disjoint p*gb-closed sets A and B, there exist disjoint p*gb-open sets U and V such that A \subseteq U and B \subset V.

Theorem 3.2. In a topological space X, the following are equivalent:

- (a) X is p*gb-normal.
- (b) For every p*gb-closed set A in X and every p*gb-open set U containing A, there exists a p*gb- open set V containing A such that p*gbcl(V)⊆U.

- (c) For each pair of disjoint p*gb-closed sets A and B in X, there exists a p*gb-open set U containing A such that p*gbcl(U)∩B=φ.
- (d) For each pair of disjoint p*gb-closed sets A and B in X, there exist p*gb-open sets U and V containing A and B respectively such that p*gbcl(U) ∩ p*gbcl(V)=φ.

Proof: (a) \rightarrow (b): Let U be a p*gb-open set containing the p*gb-closed set A. Then B=X\U is a p*gb-closed set disjoint from A. Since X is p*gb-normal, there exist disjoint p*gb-open sets V and W containing A and B respectively. Then p*gbcl(V) is disjoint from B, since if y \in B, the set W is a p*gb-open set containing y disjoint from V. Hence p*gbcl(V) \subseteq U.

(b) \rightarrow (c): Let A and B be disjoint p*gb-closed sets in X. Then X\B is a p*gb-open set containing A. By (ii), there exists a p*gb-open set U containing A such that p*gbcl(U) X\B. Hence p*gbcl(U) \cap B= φ . This proves (c). (c) \rightarrow (d): Let A and B be disjoint p*gb-closed sets in X. Then, by (iii), there exists a p*gb-open set U containing A such that p*gbcl(U) \cap B= φ . Since p*gbcl(U) is p*gb-closed, B and p*gbcl(U) are disjoint p*gb-closed sets in X. Again by (iii), there exists a p*gb-open set V containing B such that p*gbcl(U) \cap p*gbcl(V)= φ . This proves (d).

(d) \rightarrow (a): Let A and B be the disjoint p*gb-closed sets in X. By (iv), there exist p*gb-open sets U and V containing A and B respectively such that p*gbcl(U) \cap p*gbcl(V)= φ . Since U \cap V \subseteq p*gbcl(U) \cap p*gbcl(V), U and V are disjoint p*gbopen sets containing A and B respectively. Thus, X is p*gb-normal.

Theorem 3.3. A space (X,τ) is p*gb-normal if and only if for every p*gb-closed set F and p*gb-open set G containing F, there exists a p*gb-open set V such that $F \subseteq V \subseteq p*gbcl(V) \subseteq G$. **Proof:** Let (X,τ) be p*gb-normal. Let F be a p*gb-closed set and let G be a p*gb-open set containing F. Then F and X\G are disjoint p*gb-closed sets. Since X is p*gb-normal, there exist disjoint p*gb-open sets V₁ and V₂ such that $F \subseteq V_1$ and X\G V_2 . Thus $F \subseteq V_1 \subseteq X \setminus V_2 \subseteq G$. Since V_2 is p*gb-closed, so p*gbcl(V_1) V_2 V_3 V_4 V_4 V_5 V_5 V_6 V_7 V_8 V_8

Then $X \setminus H_2$ is an p^*gb -open set containing H_1 . By assumption, there exists a p^*gb -open set V such that $H_1 \subseteq V \subseteq p^*gbcl(V) \subseteq X \setminus H_2$. Since V is p^*gb -open and $p^*gbcl(V)$ is p^*gb -closed. Then $X \setminus p^*gbcl(V)$ is p^*gb -open. Now $p^*gbcl(V) \subseteq X \setminus H_2$ implies that $H_2 \subseteq X \setminus p^*gbcl(V)$. Also, $V \cap (X \setminus p^*gbcl(V)) \subseteq p^*gbcl(V) \cap (X \setminus p^*gbcl(V)) = \varphi$. That is V and $X \setminus p^*gbcl(V)$ are disjoint p^*gb -open sets containing H_1 and H_2 respectively. This shows that (X, τ) is p^*gb -normal.

Theorem 3.4. For a space X, then the following are equivalent:

- (a) X is p*gb-normal.
- (b) For any two p*gb-open sets U and V whose union is X, there exist p*gb-closed subsets A of U and B of V whose union is also X.

Proof: (a) \rightarrow (b): Let U and V be two p*gb-open sets in a p*gb-normal space X such that X=UUV. Then X\U, X\V are disjoint p*gb-closed sets. Since X is p*gb-normal, then there exist disjoint p*gb-open sets G_1 and G_2 such that X\U \subseteq G1 and X\V \subseteq G2. Let A=X\G1 and B=X\G2. Then A and B are p*gb-closed subsets of U and V respectively such that AUB=X. This proves (b).

(b) \rightarrow (a): Let A and B be disjoint p*gb-closed sets in X. Then X\A and X\B are p*gb-open sets whose union is X. By (ii), there exists p*gb-closed sets F₁ and F₂ such that F₁ \subseteq X\A, F₂ \subseteq X\B and F₁ \cup F₂=X. Then X\F₁ and X\F₂ are disjoint p*gb-open sets containing A and B respectively. Therefore, X is p*gb-normal.

Theorem 3.5. Let $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ be a function.

- (a) If f is injective, p*gb-irresolute, p*gb-open and X is p*gb-normal then Y is p*gb-normal.
- (b) If f is p*gb-irresolute, p*gb-closed and Y is p*gb-normal then X is p*gb-normal.

Proof: (a) Suppose X is p*gb-normal. Let A and B be disjoint p*gb-closed sets in Y. Since f is p*gb-irresolute, $f^1(A)$ and $f^1(B)$ are p*gb-closed in X. Since X is p*gb-normal, there exist disjoint p*gb-open sets U and V in X such that $f^1(A) \subseteq U$ and $f^1(B) \subseteq V$. Now $f^1(A) \subseteq U \Rightarrow A \subseteq f(U)$ and $f^1(B) \subseteq V \Rightarrow B \subseteq f(V)$. Since f is a p*gb-open map, f(U) and f(V) are p*gb-open in Y. Also, $U \cap V = \varphi \Rightarrow f(U \cap V) = \varphi$ and f is injective, then $f(U) \cap f(V) = \varphi$. Thus f(U) and f(V) are disjoint p*gb-open sets in Y containing A and B respectively. Thus, Y is p*gb-normal.

(b)Suppose Y is p*gb-normal. Let A and B be disjoint p*gb-closed sets in X. Since f is p*gb-irresolute and p*gb-closed, f(A) and f(B) are p*gb-closed in Y. Since Y is p*gb-normal, there exist disjoint p*gb-open sets U and V in Y such that $f(A)\subseteq U$ and $f(B)\subseteq V$. That is $A\subseteq f^{-1}(U)$ and $B\subseteq f^{-1}(V)$. Since f is p*gb-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint p*gb-open such that $A\subseteq f^{-1}(U)$ and $B\subseteq f^{-1}(V)$. Thus, X is p*gb-normal.

Theorem 3.6. If given a pair of disjoint p*gb-closed sets A, B of X, there is p*gb-continuous function $f:X \rightarrow [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$, then (X,τ) is p*gb-normal.

Proof: Let (X,τ) be a topological space. Suppose for any pair of disjoint p*gb-closed sets A, B in X, there exists a p*gbcontinuous map $f:X \rightarrow [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$. Let E and F be disjoint p*gb-closed sets in X. Lt a, $b \in [0, 1]$ at a≤b. Take G= [0, a) and H=(b,1]. Then G and H are disjoint open sets in [0, 1]. Since f is p*gb-continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are p*gb-open in X. By our assumption, $f(E) = \{0\}$ and f(F)=**{1}**. Now f(E)={0} implies $f^{-1}(f(E)) \subseteq f^{-1}(\{0\}) \Rightarrow E \subseteq f^{-1}(f(E)) \subseteq f^{-1}(\{0\}) \Rightarrow E \subseteq f^{-1}(\{0\}).$ Similarly, $F \subset f^{-1}(\{1\})$. Evidently, $\{0\} \subset [0, a] \Rightarrow f^{-1}(\{0\}) \subset [0, a]$ $f^{-1}([0, a))$. This implies that $E \subseteq f^{-1}(\{0\}) \subseteq f^{-1}([0, a)) =$ $f^{-1}(G)$. Also $\{1\}\subseteq (b, 1] \Rightarrow f^{-1}(\{1\})\subseteq f^{-1}((b, 1])$ which implies $F \subseteq f^{-1}(\{1\}) \subseteq f^{-1}((b, 1]) = f^{-1}(H)$. Fuhrer, $f^{-1}(G)$ $\cap f^{-1}(H) = f^{-1}(G \cap H f^{-1}(\Phi) = \Phi$. So, we have a pair of disjoint p*gb-open sets, $f^{-1}(G)$, $f^{-1}(H)\subseteq X$ such that $E\subseteq$ $F \subseteq f^{-1}(H)$. This proves that (X,τ) is p*gb-normal.

Theorem 3.7. If f is a p*gb-continuous and closed injection of a topological space X into a normal space Y and if every p*gb-closed set in X is closed, then X is p*gb-normal.

Proof: Let A and B be disjoint p*gb-closed sets in X. By assumption, A and B are closed in X. Then f(A) and f(B) are disjoint closed sets in Y. Since Y is normal, there exist disjoint open sets V_1 and V_2 in Y such that $f(A) \subseteq I_1$ and $f(B) \subseteq V_2$. Then $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint p*gb-open sets in X containing A and B respectively. Hence X is p*gb-normal.

Theorem 3.8. If f is a continuous p*gb-open bijection of a normal space X into a space Y and if every p*gb-closed set in Y is closed, then Y is p*gb-normal.

Proof: Let A and B be p*gb-closed set in Y. Then by assumption, B is closed in Y. Since f is a continuous bijection, $f^{-1}(A)$ and $f^{-1}(B)$ is a closed set in X. Since X is normal there exist disjoint open sets U_1 and U_2 in X such that $f^{-1}(A)\subseteq U_1$ and $f^{-1}(B)\subseteq U_2$. Since f is p*gb-open, $f(U_1)$ and f (U_2) are disjoint p*gb-open sets in Y containing A and B respectively. Hence Y is p*gb-normal.

4. Strongly p*gb-normal spaces

Definition 4.1. A topological space (X, τ) is said to be strongly p*gb-normal if for any two disjoint p*gb-closed sets A and B, there exist disjoint open sets U and V such that A \subseteq U and B \subseteq V.

Proposition 4.2.Every strongly p*gb-normal space is p*gb-normal.

Proof: Suppose X is strongly p*gb-normal. Let F and G be disjoint p*gb-closed sets. Since X is strongly p*gb-normal, there exist disjoint open sets U and V such that equal U and $F \subseteq V$. Since every open set is p*gb-open, U and V are p*gb-open sets with the condition $G \subseteq U$ and $F \subseteq V$. This implies that X is p*gb-normal.

Theorem 4.3. In a topological space X, the following are equivalent:

- a) X is strongly p*gb-normal.
- b) For every p*gb-closed set A in X and every p*gb-open set U containing A, there exists an open set V containing A such that cl(V)⊆U.
- c) For each pair of disjoint p*gb-closed sets A and B in X, there exists an open set U containing A such that $cl(U) \cap B = \varphi$.
- d) For each pair of disjoint p*gb-closed sets A and B in X, there exist open sets U and V containing A and B respectively such that cl(U)∩cl(V)=φ.

Proof: (a) \rightarrow (b): Let U be a p*gb-open set containing the p*gb-closed set A. Then B=X\U is a p*gb-closed set disjoint from A. Since X is strongly p*gb-normal, there exist disjoint open sets V and W containing A and B respectively. Then cl(V) is disjoint from B, since if y \in B, the set W is an open set containing y disjoint from V. Hence cl(V) \subseteq U.

- (b) \rightarrow (c): Let A and B be disjoint p*gb-closed sets in X. Then X\B is a p*gb-open set containing A. By (ii), there exists an open set U containing A such that cl(U) \subseteq X\B. Hence cl(U) \cap B= φ . This proves (c).
- $(c) \rightarrow (d)$: Let A and B be disjoint p*gb-closed sets in X. Then, by (iii), there exists an open set U containing A such that $cl(U) \cap B = \varphi$. Since cl(U) is p*gb-closed, B and cl(U) are disjoint p*gb-closed sets in X. Again by (iii), there exists an open set V containing B such that $cl(U) \cap cl(V) = \varphi$. This proves (d).
- $(d) \rightarrow (a)$: Let A and B be the disjoint p*gb-closed sets in X. By (iv), there exist open sets U and V containing A and B respectively such that $cl(U) \cap cl(V) = \varphi$. Since $U \cap V \subseteq cl(U) \cap cl(V) = \varphi$, U and V are disjoint open sets containing A and B respectively. Thus, X is strongly p*gb-normal.

Corollary 4.4. In a topological space X, the following are equivalent:

- (a) X is strongly p*gb-normal.
- (b) For every closed set A in X and every open set U containing A, there exists an open set V containing A such that cl(V)⊆U.
- (c) For each pair of disjoint closed sets, A and B in X, there exists an open set U containing A such that $cl(U) \cap B = \phi$.
- (d) For each pair of disjoint closed sets, A and B in X, there exist open sets U and V containing A and B respectively such that $cl(U) \cap cl(V) = \Phi$.

Proof. Since every closed set is p*gb-closed and follows from the above theorem.

Theorem 4.5. A space (X,τ) is strongly p*gb-normal if and only if for every p*gb-closed set F and p*gb-open set G containing F, there exists an open set V such that $F\subseteq V\subseteq cl(V)\subseteq G$.

Proof: Let (X,τ) be strongly p*gb-normal. Let F be a p*gb-closed set and let G be a p*gb-open set containing F. Then F and X\G are disjoint p*gb-closed sets. Since X is strongly p*gb-normal, there exist disjoint open sets V_1 and V_2 such that $F \subseteq V_1$ and $X \setminus G \subseteq V_2$. Thus $F \subseteq V_1 \subseteq X \setminus V_2 \subseteq G$. Since $X \setminus V_2$ is closed, so $cl(V_1) \subseteq cl(X \setminus V_2) = X \setminus V_2 \subseteq G$. Take $V = V_1$. This implies $\subseteq V \subseteq cl(V) \subseteq G$. Conversely suppose the condition holds. Let H_1 and H_2 be two disjoint p*gb-closed sets in X. Then $X \setminus H_2$ is a p*gb-open set containing H_1 . By assumption, there exists an open set V such that $H_1 \subseteq V \subseteq cl(V) \subseteq X \setminus H_2$. Since V is open and cl(V) is closed. Then $X \setminus cl(V)$ is open. Now

 $cl(V)\subseteq X\setminus H_2$ implies that $H_2\subseteq X\setminus cl(V)$. Also, $V\cap (X\setminus cl(V)\subseteq cl(V)\cap (X\setminus cl(V))=\varphi$. That is V and $X\setminus cl(V)$ are disjoint open sets containing H_1 and H_2 respectively. This shows that (X,τ) is strongly p^*gb -normal.

Theorem 4.6. For a space X, then the following are equivalent:

- (a) X is strongly p*gb-normal.
- (b) For any two p*gb-open sets U and V whose union is X, there exist closed subsets A of U and B of V whose union is also X.

Proof: (a) \rightarrow (b): Let U and V be two p*gb-open sets in a strongly p*gb-normal space X such that X=UUV. Then X\U, X\V are disjoint p*gb-closed sets. Since X is strongly p*gb-normal, then there exist disjoint open sets G_1 and G_2 such that X\U \subseteq G1 and X\V \subseteq G2. Let A=X\G1 and B=X\G2. Then A and B are closed subsets of U and V respectively such that AUB=X. This proves (b).

(b) \rightarrow (a): Let A and B be disjoint p*gb-closed sets in X. Then X\A and X\B are p*gb-open sets whose union is X. By (b), there exist closed sets F₁ and F₂ such that F₁ \subseteq X\A, F₂ \subseteq X\B and F₁ \cup F₂=X. Then X\F₁ and X\F₂ are disjoint open sets containing A and B respectively. Therefore, X is strongly p*gb-normal.

Theorem 4.7. If given a pair of disjoint p*gb-closed sets A, B of X, there is a continuous function $f:X \to [0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$, then (X,τ) is strongly p*gb-normal.

Proof: Let (X,τ) be a topological space. Suppose for any pair of disjoint p*gb-closed sets A, B in X, there exists a continuous map $f:X \rightarrow [0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$. Let E and F be disjoint p*gb-closed sets in X. Let a, $b \in [0,1]$ be arbitrary such that a $\leq b$. Take G=[0, a) and H=(b,1]. Then and H are disjoint pen sets in [0, 1] Since f is continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are open in X. By our assumption, $f(E) = \{0\}$ and $f(V) = \{1\}$. Now $f(E) = \{0\}$ implies $f^{-1}(f(E))\subseteq f^{-1}(\{0\})\Rightarrow E\subseteq f^{-1}(f(E))\subseteq f^{-1}(\{0\})\Rightarrow E\subseteq$ $f^{-1}(\{0\})$. Similarly, $F \subseteq f^{-1}(\{1\})$. Evidently, $\{0\} \subseteq [0, a) \Rightarrow$ $f^{-1}(\{0\}) \subseteq f^{-1}([0, a))$. This implies that $E \subseteq f^{-1}(\{0\}) \subseteq f^{-1}([0, a])$ a)) = $f^{-1}(G)$. Also $\{1\}\subset (b, 1] \Rightarrow f^{-1}(\{1\})\subset f^{-1}(\{b, 1\})$ which implies $F \subseteq f^{-1}(\{1\}) \subseteq f^{-1}(\{b, 1\}) = f^{-1}(\{b, 1$ $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(GH) = f^{-1}(\phi) = \phi$. So, we have a pair of disjoint open sets, $f^{-1}(G)$, $f^{-1}(H)\subseteq X$ such that $\subseteq f^{-1}(G)$ and $F \subseteq f^{-1}(H)$. This proves that (X,τ) is strongly p*gb-normal.

Theorem 4.8. If f is a continuous and closed injection of a topological space X into a normal space Y and if every p*gb-closed set in X is closed, then X is p*gb-normal.

Proof: Let A and B be disjoint p*gb-closed sets in X. By assumption, A and B are closed in X. Then f(A) and f(B) are disjoint closed sets in Y. Since Y is normal, there exist disjoint open sets V_1 and V_2 in Y such that $f(A) \subseteq V_1$ and $f(B) \subseteq V_2$. Hence X is p*gb-normal.

Theorem 4.9. If f is a continuous and open bijection of a normal space X into a space Y and if every p*gb-closed set in Y is closed, then Y is p*gb-normal.

Proof: Let A and B be p*gb-closed set in Y. Then by assumption, B is closed in Y. Since f is a continuous function, $f^{-1}(A)$ and $f^{-1}(B)$ is a closed set in X. Since X is normal, there exist disjoint open sets U_1 and U_2 in X such that $f^{-1}(A) \subseteq U_1$ and $f^{-1}(B) \subseteq U_2$. Since f is open, $f(U_1)$ and $f(U_2)$ are disjoint open sets in Y containing A and B respectively. Hence Y is strongly p*gb-normal.

5. Weakly p*gb-normal spaces

Definition 5.1. A space X is said to be **weakly p*gb-normal** if, for every pair of disjoint closed sets, A and B in X, there are disjoint p*gb-open sets U and V in X containing A and B respectively.

Theorem 5.2. (i) Every normal space is weakly p*gb-normal. (ii) Every p*gb-normal space is weakly p*gb-normal.

Proof: Suppose X is normal. Let A and B be disjoint closed sets in X. Since X is normal, there exist disjoint open sets U and V containing A and B respectively. Then U and V are p*gb-open in X. This implies that X is weakly p*gb-normal. This proves (i).

Suppose X is p*gb-normal. Let A and B be disjoint closed sets in X. Then A and B are disjoint p*gb-closed sets in X. Since X is p*gb-normal, there exist disjoint p*gb-open sets U and V containing A and B respectively. Therefore, X is weakly p*gb-normal. This proves (iii).

Theorem 5.3. In a topological space X, the following are equivalent:

(a) X is weakly p*gb-normal.

- (b) For every closed set F in X and every open set U containing F, there exists a p*gb-open set V containing F such that p*gbcl(V)⊆U.
- (c) For each pair of disjoint closed sets, A and B in X, there exists a p*gb-open set U containing A such that p*gbcl(U)∩B=φ.

Proof: (a) \rightarrow (b): Let U be an open set containing the closed set F. Then H=X\U is a closed set disjoint from F. Since X is weakly p*gb-normal, there exist disjoint p*gb-open sets V and W containing F and H respectively. Then p*gbcl(V) is disjoint from H, since if y \in H, the set W is a p*gb-open set containing y disjoint from V. Hence p*gbcl(V) \subseteq U.

(b) \rightarrow (c): Let A and B be disjoint closed sets in X. Then X\B is an open set containing A. By (b), there exists a p*gb-open set U containing A such that p*gbcl(U) \subseteq X\B. Hence p*gbcl(U) \cap B= φ . This proves (c).

(c) \rightarrow (d): Let A and B be the disjoint p*gb-closed sets in X. By (iii), there exists a p*gb-open set U containing A such that p*gbcl(U) \cap B= φ . Take V=X\p*gbcl(U). Then U and V are disjoint p*gb-open sets containing A and B respectively. Thus, X is weakly p*gb-normal.

Theorem 5.4. For a space X, then the following are equivalent:

- (a) X is weakly p*gb-normal.
- (b) For any two open sets U and V whose union is X, there exist p*gb-closed subsets A of U and B of V whose union is also X.

Proof: (a) \rightarrow (b): Let U and V be two open sets in a weakly p*gb-normal space X such that X=UUV. Then X\U, X\V are disjoint closed sets. Since X is weakly p*gb-normal, then there exist disjoint p*gb-open sets G_1 and G_2 such that $X\setminus U\subseteq G_1$ and $X\setminus V\subseteq G_2$. Let $A=X\setminus G_1$ and $B=X\setminus G_2$. Then A and B are p*gb-closed subsets of U and V respectively such that $A\cup B=X$. This proves (b).

(b) \rightarrow (a): Let A and B be disjoint closed sets in X. Then X\A and X\B are open sets whose union is X. By (ii), there exists p*gb-closed sets F₁ and F₂ such that F₁ \subseteq X\A, F₂ \subseteq X\B, and F₁ \cup F₂=X. Then X\F₁ and X\F₂ are disjoint p*gb-open sets containing A and B respectively. Therefore, X is weakly p*gb-normal.

Theorem 5.5. Let f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ be a function.

- (a) If f is injective, continuous, p*gb-open and X is weakly p*gb-normal then Y is weakly p*gb-normal.
- (b) If f is p*gb-irresolute, p*gb-closed and Y is weakly p*gb-normal then X is weakly p*gb-normal.

Proof: (a) Suppose X is weakly p*gb-normal. Let A and B be disjoint closed sets in Y. Since f is continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are closed in X. Since X is weakly p*gb-normal, there exist disjoint p*gb-open sets U and V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$.

Now $f^1(A) \subseteq U \Rightarrow A \subseteq f(U)$ and $f^1(B) \subseteq V \Rightarrow B \subseteq f(V)$. Since f is a p^*gb -open map, f(U) and f(V) are p^*gb -open in Y. Also, $U \cap V = \varphi \Rightarrow f(U \cap V) = \varphi$ and f is injective, then $f(U) \cap f(V) = \varphi$. Thus f(U) and f(V) are disjoint p^*gb -open sets in Y containing A and B respectively. Thus, Y is weakly p^*gb -normal.

(b)Suppose Y is p*gb-normal. Let A and B be disjoint closed sets in X. Since f is p*gb-irresolute and p*gb-closed, f(A) and f(B) are p*gb-closed in Y. Since Y is p*gb-normal, there exist disjoint p*gb-open sets U and V in Y such that $f(A)\subseteq U$ and $f(B)\subseteq V$.

That is $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Since f is p*gb-irresolute, f⁻¹(U) and f⁻¹(V) are disjoint p*gb-open such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Thus, X is p*gb-normal.

REFERENCES

- [1] Andrijevic D, On b-open sets, Mat. Vesnik 48(1996), 59-64.
- [2] Levine N, Generalized closed sets in topology, Rand. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [3] Selvi, T, Punitha Dharani, A, Some New Class of Nearly Closed and Open Sets, Asian Journal of Current Engineering and Maths, vol. 1(5), pp.305-307 (2012).
- [4] Aruna Glory Sudha. I, Zion Chella Ruth S, More on p*gb-Closed Sets in Topological Spaces, International Journal of Mathematical Archive, 14(1), 2023, ISSN: 2229 5046,10-14.
- [5] Willard S., General Topology, Addison Wesley, 1970.