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Abstract: 

The probability of packet collisions increases exponentially 

w.r.t. number of communications due to which design of 

collision-control protocols is of primary importance for 

large-scale wireless networks. Existing collision control 

models either showcase high complexity, or have slower 

response, due to which their efficiency levels are limited 

for larger networks. Moreover, most of these models 

cannot be scaled due inherent computational 

redundancies. To overcome these issues, this text 

proposes design of a novel multipath routing model for 

reducing network collisions via incremental bioinspired 

optimizations. The proposed model initially deploys a 

Bacterial Foraging Optimizer (BFO) for segregating packets 

into multipath requests. This segregation is done based on 

temporal routing performance for different set of paths. 

The segregated packets are transmitted over the network 

via an efficient set of multiple paths which are identified 

by Genetic Algorithm (GA) optimizations. The selected 

paths are incrementally tuned by a Q-Learning based layer, 

that assists in reducing collisions under large number of 

packet requests. This is done via temporal evaluation of 

network parameters, and continuous model updates for 

high-efficiency operations. The proposed model was 

tested under large-scale networks with heterogeneous 

requests, and it was observed that the model was able to 

improve communication speed by 8.5%, reduce energy 

consumption by 6.4%, maintain high packet delivery 

performance and improve data rate by 3.9% when 

compared with existing multipath routing protocols that 
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support congestion control for large-scale network 

scenarios. 

Keywords: Wireless, Congestion, Multipath, Routing, 

Energy, BFO, GA, Delay, Throughput, Packet, Delivery, 

Scenarios 

 

1. Introduction 

Individual wireless sensors with built-in communication 

capabilities constitute wireless sensor networks (WSNs). 

These sensor nodes collect environmental information, 

which is subsequently sent to the sink node via the ad hoc 

network protocol that uses Multi-Agent Deep Reinforcement 

Learning Congestion Control (MA RL CC) [1, 2, 3, 4] Wireless 

sensor networks (WSNs) are often recognized as one of the 

Internet of Things' most vital components. WSNs have 

several applications, including monitoring natural 

ecosystems, averting natural disasters, managing automated 

systems, and in the medical and health care areas. The 

Internet of Things has several opportunities for WSN use. The 

need for wireless sensor networks (WSNs) across a range of 

sectors is increasing, as is the requirement to execute 

multiple application tasks for those organizations inside the 

same networks. Similar to the soil monitoring system used in 

contemporary agriculture via Game Theory Based Congestion 

Control (GTCC) [5, 6], The Sink gets continual data on the 

physiological status of the surrounding area. Considering the 

limited time available, this knowledge is crucial. The 

temperatures must be supplied to the Sink as quickly as 

physically feasible, since they indicate the current 

environmental conditions. As the number of sensor nodes in 

the monitored environment increases, it becomes evident 

that the statistics are not very accurate, despite their use for 

the application. The production of non-periodic sensed data 

and the occurrence of the triggered event occur when the 

monitored value exceeds or deviates from the threshold 

value. For this data to be sent successfully, there can be only 

a little amount of lag delays [7, 8, 9]. There is a possibility that 

the information generated in response to a user query will 

have certain characteristics. In addition, the Sink must 

receive media data that is given with more precision, such as 

a freshly taken image. Due to this, contemporary WSNs are 

collaborative systems used to execute many applications 
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concurrently [10, 11, 12]. In addition, each of these apps has 

distinct quality of service needs and creates a distinct variety 

of data flow (QoS). Multiple sensor nodes provide their data 

to a single central processing unit, also known as a sink, which 

receives the majority of the data produced by WSNs. 

Frequently, each sensor node use the routing strategy to 

decide which node should serve as its parent. The structure 

of the network resembles a tree. When the bandwidth 

capacity of the topology tree is surpassed by the amount of 

data load, network congestion is obvious. When all of the 

data from the nodes is sent to the Sink, this occurs. 

Congestion has several effects on a network, including a 

reduction in throughput, an uneven distribution of data, an 

increase in the frequency of packet loss, and an increase in 

wait times. Because of unnecessary packet retransmissions, 

the node's resources are managed inefficiently. In addition, it 

will impair the network's capacity to endure for an extended 

term. Multiple types of data traffic attempt to transmit as 

many packets as possible without regard for the available 

capacity, resulting in congestion. Congestion may be 

decreased and avoided in real-time circumstances if diverse 

forms of data traffic work together to use network resources. 

This part is followed by a comprehensive analysis of these 

models, which demonstrates that the high complexity or 

sluggish reaction times of present collision management 

strategies restrict their usefulness in networks with more 

nodes. This section is now finished. Moreover, the majority 

of these models are not scalable due to the computational 

redundancies they include. The third component of this study 

provides a solution in the form of a unique multipath routing 

model with the objective of minimizing the frequency of 

network collisions via bio-inspired enhancements. The 

performance of the model is examined in a variety of real-

world settings in Section 4, which discusses model validation. 

Finally, some concluding remarks and proposals for 

enhancing the model presented for application in large-scale 

situations are provided to scale the model under real-time 

scenarios. 

2. Literature Review 

Various techniques and algorithms [13, 14, 15] have been 

developed over the last many years to alleviate WSN 

congestion that use Delay-based Path-specified Congestion 
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Control Protocol (DPCCP). When a transient surge in demand 

exceeds the transmission capacity of a network resource, 

congestion is often the outcome. Therefore, resource 

management and traffic control are two methods that may 

be used to reduce traffic volume. In the case of congestion, 

the first option includes rerouting data packets to the Sink 

through routes with lower traffic densities. It is likely that 

increasing the number of active nodes, routing paths, 

transmission distance, and capacity in wireless networks 

might assist alleviate congestion in these networks. As an 

example, work in [16, 17, 18] employs an approach for 

topology-aware resource adaptation as its central 

component. This strategy is based on the results of a model 

for capacity analysis that assesses the capacity of a variety of 

topologies. The most fundamental weakness of this strategy 

is that it requires expertise not just with locally accessible 

resources, but also with those accessible throughout the 

whole network [19, 20]. Working with wireless connections 

poses a variety of obstacles, one of which is the inability to 

deal with this problem simply. In contrast to the resource 

management approach, the traffic control strategy aims to 

alleviate traffic congestion by adjusting the amount of traffic 

at the origin or hub node. This is done to decrease the time 

spent sitting in traffic. When the demands on the network's 

resources approach or beyond the network's capacity, the 

traffic management will restrict the number of injected 

packets in order to relieve congestion. [21, 22, 23, 24] details 

the implementation of the end-to-end control strategy. 

Reactive end-to-end control is seldom used in protocols and 

algorithms since it is reliant on the round-trip time between 

the source and sink nodes. This is due to the difficulty of 

implementing the approach. The hop-by-hop control 

mechanism is now the most common method of operation 

due to its dispersed control style and quicker response time. 

The Priority-Based Congestion Control System is a hop-by-

hop congestion control system created specifically for 

wireless sensor networks that uses Reinforcement Learning-

Based Transmission Control (RLTC) [25, 26, 27, 28]. The 

severity of the problem is assessed, and a priority index is 

utilized to define how each system bottleneck should be 

managed. The density of a network may be estimated by 

examining both the inter-arrival and service times of the 

packets. For each and every node, a unique index has been 

created. A node with a higher priority index will have access 
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to a larger quantity of transmission capacity. When a node in 

HRTC [14] detects congestion, a back pressure message is 

sent and a report is created. By decreasing the pace at which 

data travels across the network, network nodes assist 

alleviate congestion. Despite the recent incorporation of 

game theory into the hop-by-hop control mechanism, early 

findings show that it is the most effective method for 

minimizing congestion. The application of game theory to 

traffic congestion management (GTCC) [15, 16]. Monitoring 

the packet transmission rate enables the discovery of 

congestion. The parent node will send out congestion alerts, 

and the children will use game theory to evaluate if they 

should move parents. This control protocol simplifies the 

process of integrating the complex routing topology into the 

routing algorithm. The GTCCF [29, 30] proposes utilizing 

game theory as the foundation for a new paradigm for 

managing congestion. A network is considered to be 

congested when child nodes broadcast an excessive quantity 

of data packets to their parent node at a rapid rate. To 

discover a solution to this bottleneck, we may imagine each 

child node as a player in a game in which there are no victors 

or losers. In the non-cooperative game, the reproduction rate 

of each child node is boosted to its maximum level. In the 

present competitive market, neither the legally prescribed 

minimum charge nor the quality of the service are taken into 

consideration. The quality of service cannot be maintained 

when the rate solution of the Nash equilibrium is lower than 

the minimal rate. Although hop-by-hop congestion 

management has the ability to alleviate network congestion, 

its design does not always account for QoS requirements and 

avoidance. In an effort to simultaneously enhance these two 

components, swarm intelligence optimization is being used. 

The technique described in [31, 32] is inspired by the flocking 

behavior of birds in order to guide data packets toward 

unused nodes and away from occupied nodes. When 

transferring data to the Sink, the recommended method 

prioritizes paths with lower traffic levels. Due to the 

unpredictability of bird flocking and the height of the 

landscape above, it is impossible to determine the optimal 

route. Ant Colony Optimization (ACO) is an additional leading 

optimization method. [33, 34] It is a very effective heuristic 

stochastic optimal strategy. The efficiency of the feedback 

loop is enhanced by the improvements made by the ACO. 

Using persistent pheromone analysis, the most effective line 
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of action is determined. The ACO has found widespread use 

in the solution of combinatorial problems, including global 

multi-object optimization and complex network routing, to 

mention just two examples. Due to their symbiotic 

connection, congestion management and routing issues in 

WSNs are ideal candidates for the ACO's distributed 

computing mode and low computational cost. MS-ACO refers 

to a system that simultaneously tackles congestion concerns 

and meets quality of service standards. When the MS-ACO 

detects congestion, it assumes a very pessimistic view of the 

situation and modifies the path accordingly. Despite its 

significant energy consumption, the bulk of this technology's 

applications are in next-generation networks. The ARCC's [35, 

36] usage of the PCCP protocol helps to alleviate congestion. 

The first step in the ACO procedure is finding the most direct 

path from the origin to the ultimate destination. Second, the 

Sink's artificial ants analyze the level of congestion and use 

PCCP to resolve the problem. Although this approach is 

analogous to the ACO and PCCP, it does not account for the 

need of data categorization scenarios. 

3. Proposed hybrid Bioinspired Model for improving 

Routing performance of Energy aware Wireless Sensor 

Networks 

According to an analysis of the current congestion control 

models, it can be seen that these models either exhibit high 

complexity or have slower response times, which limits their 

efficacy for larger networks. Furthermore, because of built-in 

computational redundancies, the majority of these models 

cannot be scaled. This section suggests designing a novel 

multipath routing model to address these problems by 

decreasing network collisions through gradual bio-inspired 

optimizations. The proposed model first deploys a Bacterial 

Foraging Optimizer (BFO) to separate packets into multipath 

requests, as shown in the model's flow diagram in figure 1. 

This division is based on the effectiveness of temporal routing 

for various sets of paths. The network's efficient set of 

multiple paths used for the transmission of the separated 

packets is determined by Genetic Algorithm (GA) 

optimizations. A Q-Learning layer that is based on the 

selected paths incrementally fine-tunes them helps prevent 

collisions when a lot of packet requests are made. For high-

efficiency operations, this is accomplished through the 
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temporal evaluation of network parameters and ongoing 

model updates. 

Thus, the model initially collects network information sets, 

node information sets & communication parameter sets for 

identification of multipath routes. These routes are evaluated 

via a Bacterial Foraging Optimizer (BFO), that works as per 

the following process, 

• Setup the following Bacterial Foraging constants, 

o A set of reconfigurable Bacterium (NB) 

o An iterative set of rounds for reconfiguring these 

Bacterium (NI) 

o Rate of social learning for the Bacterium (Lb) 

o A set of source & destination nodes (S, D) 

 

Figure 1. Design of a Dual-bioinspired Model for congestion 

control routing operations 

• To start the optimizer, calculate a reference distance via 

equation 1, 
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dref = √(xs − xd)2 − (ys − yd)2 … (1) 

Where, x & y are the Cartesian co-ordinates of the source & 

destination nodes. 

• Based on this distance metric, identify nodes that satisfy 

equation 2, 

d(src, node) < dref & d(node, dest) < dref … (2) 

Where, d(i, j) represents distance between i & j nodes. 

Because of this condition, all nodes that are between source 

& destination can be identified, and used for multipath 

routing operations. 

• From this set of nodes, stochastically (STOCH) select a 

set of nodes via equation 3, which represents a single 

Bacteria particle, 

Nsel = Lsel[STOCH(1, Size(Lsel))] … (3) 

Where, Nset is the selected set of nodes, while Lset is the list 

of nodes that are currently between source & destination 

nodes. 

• This select is done only if consecutively selected nodes 

have lower distance from destination, than previously 

selected nodes. 

• Once the node sets are selected, then a BFO fitness is 

calculated via equation 4, 

fb =
1

Nsel − 1
∑ [

dref

di+1,i
+

Ei

Max(E)
+

THR(i)

Max(THR)

Nsel−1

i=1

+
PDR(i)

100
] ∗

FTMi

Max(FTM)
… (4) 

Where, di,j represents Euclidean distance between nodes, Ei 

represents residual energy of the node, THR & PDR 

represents their previous throughput and packet delivery 

ratio levels. In this equation the feedback trust metric (FTM) 

is initialized as 1, and updated in equation 17 via feedback 

operations. 
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▪ Repeat this process for all Bacterium, so that initial 

routing paths are generated between selected set of 

source & destination nodes. 

▪ After estimation of these paths, calculate a Bacterium 

fitness threshold via equation 5, 

fth = ∑ fbi
∗

Lb

NB

NB

i=1

… (5) 

• Bacterium with f > fth are reproduced in the next 

iteration, while others are eliminated from the current 

set of iterations. 

• All eliminated bacterium are regenerated via equations 3 

& 4, which assists in identification new routing paths. 

• Repeat this process for NI iterations, and generate NB 

different routing paths. 

Once the iterations are completed, then all Bacterium with 

fb > fth are selected and used for congestion control 

operations. To perform this task, a Genetic Algorithm (GA) 

based optimization process is used, which assists in 

identification of highly efficient routing paths even under 

congestions. This GA Model works as per the following 

process, 

• Initialize the following constants for GA optimizer, 

o Total count of iterations that will be used for 

reconfiguration (Ni) 

o Total count of reconfigurable solutions (Ns) 

o Rate at which these solutions will mutate (𝐿𝑟) 

o Set of paths provided by the BFO process (𝑆𝐵𝐹𝑂) 

o Total count of packets that has to be communicated 

between the nodes (𝑁𝑃) 

• Based on these constants, a set of Ns solutions are initially 

generated using the following operations, 

o Stochastically select a set of routing paths from the 𝑆𝐵𝐹𝑂 

list, and evaluate the per-path packet count via equation 6, 

PPC =
NP

N[SBFO(Sel)]
… (6) 

Where, 𝑁[𝑆𝐵𝐹𝑂(𝑆𝑒𝑙)] represents the total number of routing 

paths that are selected stochastically for multipath routing 

operations. 
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o Segregate the packets among these paths via equation 7, 

𝑁𝑃𝑖 = 𝑃𝑃𝐶 ∗ 𝑃𝑄𝑖 … (7) 

Where, 𝑁𝑃𝑖 are the total packets that will be transmitted on 

the given path, and 𝑃𝑄 is the path quality, which is estimated 

via equation 8, 

PQ =
1

Nc
∑

PDRi

100 ∗ N(Collisions)i

Nc

i=1

… (8) 

Where, PDR represents packet delivery ratio for this path 

and is estimated via equation 9, and N(Collisions) 

represents total number of collisions that occurred on this 

path during the previous Nc communications. 

PDR =
Prx

Ptx
… (9) 

Where, Ptx & Prx represents the total number of packets 

transmitted & received by nodes during individual 

communications. 

o Based on this segregation, simulate the routing process, 

and estimate solution fitness via equation 10, 

fs =
1

N[SBFO(Sel)]
∑

Di

Max(D)
+

ei

Max(e)
+

1

PQi

N[SBFO(Sel)]

i=1

+
Max(THR)

THRi
… (10) 

Where, D is the delay needed to perform these 

communications and is evaluated via equation 11, e 

represents the energy needed for these communications and 

is calculated via equation 12, THR represents the temporal 

throughput during these communications and is calculated 

via equation 13, 

D = TScomplete − TSstart … (11) 

Where, TScomplete & TSstart represents the timestamp for 

completing and starting the communications. 

e = Estart − Ecomplte … (12) 
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Where, Estart & Ecomplete represents the initial residual 

energy of node before starting communications, and final 

energy of node after completing the communications. 

THR =
Prx

D
… (13) 

o Such solutions are generated, and a fitness threshold is 

evaluated via equation 14, 

fth =
1

Ns
∑ fsi

∗ Lr

Ns

i=1

… (14) 

• All solutions with f > fth are discarded in current 

iteration and mutated via equations 7 to 10, while other 

solutions are cross overed to the next set of iterations. 

• This process is repeated for Ni iterations, and in each 

iteration a set of Ns multipath solutions are reconfigured 

for collision-aware routing operations. 

Once all iterations are completed, then set of paths selected 

by the solution with minimum fitness are used for the routing 

process. Due to which the model is able to select routing 

paths with low congestion and high-fidelity performance 

under large-scale traffic scenarios. The selection process is 

further optimized via a Q-Learning based tuning process, 

which estimates the Q value for each of the multipaths via 

equation 15, 

Q =
1

N(Collisions)
(

PDR

100
+

THR

Max(THR)
) … (15) 

Where, PDR & THR are estimated in real-time for individual 

paths. This value of Q value is continuously evaluated for each 

communication, and a reward function is estimated via 

equation 16, 

r =
Q(New) − Q(Previous)

Lr
− LrMax(Q)

+ Q(Previous) … (16) 

If this reward factor r ≥ 1, then it indicates the Q values are 

either constant or are improving, while r < 1 indicates that 

Q values are reducing, thus the path requires corrections. To 

perform these corrections, the BFO & GA Models are 

reiterated by considering current node as source node, and 
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re-evaluating multiple paths towards destination node from 

current set of nodes. Due to this reconfiguration, the number 

of collisions is reduced, and Quality of Service (QoS) is 

improved for heterogeneous communications. Paths that do 

not require reconfiguration are fed-back to the routing 

database, and are used in future for high-speed path 

selection & communication operations. For the nodes 

present in this path, a feedback trust metric is modified via 

equation 17, 

FTMi(New) = FTMi(Old) + N[SBFO(Sel)] ∗ Lr … (17) 

This updated FTM is used in the previous equations in order 

to improve quality of path selection, thus assisting in 

reducing number of congestions and enhancing QoS levels. 

Performance of this model was evaluated on a standard 

simulation scenario, and compared with existing models in 

the next section of this text. 

4. Statistical Analysis 

The proposed MRCIB model initially deploys a Bacterial 

Foraging Optimizer (BFO) for segregating packets into 

multipath requests. This segregation is done based on 

temporal routing performance for different set of paths. The 

segregated packets are transmitted over the network via an 

efficient set of multiple paths which are identified by Genetic 

Algorithm (GA) optimizations. The selected paths are 

incrementally tuned by a Q-Learning based layer, that assists 

in reducing collisions under large number of packet requests. 

This is done via temporal evaluation of network parameters, 

and continuous model updates for high-efficiency 

operations. The proposed model was tested under large-

scale networks with heterogeneous requests. To perform 

these tests, the following simulation settings mentioned in 

table 1 were used, which assisted in evaluating the network 

under standard network conditions via the NS2 (Network 

Simulator 2.34) platform, which is a standardized toolkit for 

evaluating network performance levels. 

 

Parametric Network Settings Value for the settings 
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Propagation model used during communications Dual rays with wireless communications 

Protocol used for MAC Layer 802.16a 

Type of Queue Drop Tail Queue with Packet Priorities 

Total network nodes  1000 

Underlying protocol used for routing operations TORA (Temporally Ordered Routing 

Algorithm) 

Network Dimensions 2km x 2km 

Energy consumed by nodes during idle mode 0.05 mW 

Energy consumed by nodes during reception mode 1.5 mW 

Energy consumed by nodes during transmission mode 3 mW 

Energy consumed by nodes during sleep mode 0.001 mW 

Energy consumed by nodes during transitioning between 

modes 

0.2 mW 

Delay needed by nodes for transitioning between modes 0.01 s 

Initial energy levels  0.2 W 

Table 1. Simulation configuration of the network for 

estimating model performance levels 

As per these configurations, the model evaluated for 

different number of communications (NC), and its QoS 

metrics including communication delay (D), energy needed 

during communication (E), throughput obtained during 

communication (T), and packet delivery ratio (PDR) during 

these communications was evaluated and compared with 

GTCC [5], DP CCP [14], and RLTC [27] under similar simulation 

conditions. For each of these communications, traffic 

congestion was varied between 1% to 20%, and average 
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communication delay obtained after these communications 

was estimated, and tabulated in table 2 as follows, 

NC D (ms) 

GTCC [5] 

D (ms) 

DP CCP [14] 

D (ms) 

RLTC [27] 

D (ms) 

MRC IB 

250 1.08 1.35 1.43 0.69 

500 1.14 1.43 1.52 0.73 

750 1.20 1.53 1.64 0.79 

1000 1.29 1.71 1.85 0.91 

1250 1.48 2.01 2.19 1.08 

1500 1.78 2.43 2.64 1.29 

1750 2.17 2.91 3.13 1.53 

2000 2.56 3.38 3.61 1.76 

2250 2.93 3.83 4.08 1.98 

2500 3.29 4.28 4.56 2.22 

3125 3.66 4.80 5.11 2.47 

3500 4.00 5.29 5.63 2.70 

3750 4.29 5.72 6.09 2.89 

4375 4.59 6.15 6.54 3.09 

4750 4.86 6.52 6.93 3.28 

5000 5.18 6.93 7.36 3.49 

Table 2. Delay needed for communication during 1% to 20% congestions 
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Figure 2. Delay needed for communication during 1% to 20% 

congestions 

As per these evaluations and their visualization in figure 2, it 

was observed that the proposed model was able to improve 

the communication speed by 9.4% when compared with 

GTCC [5], 14.5% when compared with DP CCP [14], and 19.2% 

when compared with RLTC [27] even under congestions. The 

reason for this improvement in speed is use of delay & 

distance metrics during evaluation of routing paths via the 

BFO & GA processes. Due to which the model is useful for 

high-speed application scenarios. Similarly, the energy 

needed for communication can be observed from table 3 as 

follows, 

NC E (mJ) 

GTCC [5] 

E (mJ) 

DP CCP [14] 

E (mJ) 

RLTC [27] 

E (mJ) 

MRC IB 

250 2.66 4.53 3.88 1.92 

500 2.86 4.83 4.13 2.03 

750 3.02 5.09 4.35 2.14 

1000 3.18 5.34 4.56 2.24 

1250 3.33 5.58 4.76 2.34 

1500 3.47 5.82 4.97 2.45 

1750 3.62 6.11 5.22 2.58 
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2000 3.79 6.43 5.50 2.72 

2250 3.98 6.78 5.79 2.86 

2500 4.19 7.11 6.06 2.98 

3125 4.39 7.40 6.29 3.09 

3500 4.57 7.67 6.51 3.20 

3750 4.75 7.94 6.74 3.31 

4375 4.92 8.22 6.98 3.43 

4750 5.09 8.50 7.22 3.55 

5000 5.25 8.79 7.45 3.66 

Table 3. Energy needed for communication during 1% to 20% 

congestions 

 

Figure 3. Energy needed for communication during 1% to 20% 

congestions 

As per these evaluations and their visualization in figure 3, it 

was observed that the proposed model was able to reduce 

the energy needed for communication by 8.5% when 

compared with GTCC [5], 16.4% when compared with DP CCP 

[14], and 12.5% when compared with RLTC [27] even under 

congestions. The reason for this reduction in energy is use of 

residual energy levels while multipath estimations via BFO & 

consideration of consumed energy levels in the GA process. 
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Due to which the model is useful for high-lifetime application 

scenarios. Similarly, the throughput obtained during 

communication can be observed from table 4 as follows, 

NC T (kbps) 

GTCC [5] 

T (kbps) 

DP CCP [14] 

T (kbps) 

RLTC [27] 

T (kbps) 

MRC IB 

250 315.3 371.4 416.1 495.9 

500 317.9 374.5 419.6 500.0 

750 320.5 377.6 423.1 504.3 

1000 323.3 380.9 426.8 508.6 

1250 326.1 384.1 430.4 512.9 

1500 328.8 387.3 434.0 517.1 

1750 331.5 390.5 437.6 521.4 

2000 334.2 393.6 441.1 525.6 

2250 337.0 396.8 444.7 529.8 

2500 339.7 400.1 448.3 534.1 

3125 342.4 403.3 451.8 538.3 

3500 345.1 406.4 455.3 542.5 

3750 347.8 409.6 458.9 546.7 

4375 350.5 412.7 462.4 550.9 

4750 353.2 415.9 466.0 555.1 

5000 355.9 419.1 470.5 559.4 
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Table 4. Average throughput levels for communication during 

1% to 20% congestions 

 

Figure 4. Average throughput levels for communication 

during 1% to 20% congestions 

As per these evaluations and their visualization in figure 4, it 

was observed that the proposed model was able to improve 

the communication throughput by 19.3% when compared 

with GTCC [5], 14.2% when compared with DP CCP [14], and 

10.4% when compared with RLTC [27] even under 

congestions. The reason for this improvement in throughput 

is use of temporal data rate while multipath estimations via 

BFO & consideration of current throughput in the Q-Learning 

process. Due to which the model is useful for high-data-rate 

application scenarios. Similarly, the PDR obtained during 

communication can be observed from table 5 as follows, 

NC PDR (%) 

GTCC [5] 

PDR (%) 

DP CCP [14] 

PDR (%) 

RLTC [27] 

PDR (%) 

MRC IB 

250 80.66 80.29 81.20 88.50 

500 81.34 80.96 81.88 88.76 

750 82.01 81.64 82.57 89.51 

1000 82.71 82.34 83.28 90.28 

1250 83.43 83.04 83.98 91.04 

1500 84.12 83.73 84.68 91.79 
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1750 84.82 84.42 85.37 92.55 

2000 85.51 85.11 86.07 93.30 

2250 86.21 85.80 86.76 94.05 

2500 86.90 86.49 87.46 94.81 

3125 87.60 87.18 88.16 95.56 

3500 88.29 87.86 88.85 96.32 

3750 88.99 88.55 89.54 97.07 

4375 89.68 89.23 90.23 97.82 

4750 90.37 89.92 90.92 98.57 

5000 91.06 90.60 91.62 99.32 

Table 5. Average PDR levels for communication during 1% 

to 20% congestions 

 

Figure 5. Average PDR levels for communication during 1% to 

20% congestions 

As per these evaluations and their visualization in figure 5, it 

was observed that the proposed model was able to improve 

the communication PDR by 8.3% when compared with GTCC 

[5], 9.2% when compared with DP CCP [14], and 6.4% when 

compared with RLTC [27] even under congestions. The 

reason for this improvement in PDR is use of packet delivery 
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performance while multipath estimations via BFO & 

consideration of current PDR levels in the Q-Learning 

process. Due to which the model is useful for high-

consistency application scenarios. As per these evaluations, it 

can be observed that the proposed model is highly useful for 

a wide variety of real-time routing scenarios even under 

different rate of congestions. 

5. Conclusion and future scope 

A Bacterial Foraging Optimizer (BFO) is initially used by the 

proposed MRCIB model to separate packets into multipath 

requests. This division is based on the effectiveness of 

temporal routing for various sets of paths. The network's 

efficient set of multiple paths used for the transmission of the 

separated packets is determined by Genetic Algorithm (GA) 

optimizations. A Q-Learning layer that is based on the 

selected paths incrementally fine-tunes them helps prevent 

collisions when a lot of packet requests are made. For high-

efficiency operations, this is accomplished through the 

temporal evaluation of network parameters and ongoing 

model updates. The suggested model was evaluated in large 

networks with diverse requests. When the proposed model 

was validated in terms of communication delay, it was found 

that it was able to increase communication speed even in 

congested areas by 9.4% when compared to GTCC [5], 14.5% 

when compared to DP CCP [14], and 19.2% when compared 

to RLTC [27]. This increase in speed is attributable to the use 

of delay and distance metrics during the BFO and GA 

processes' evaluation of routing paths. The model is useful in 

scenarios involving high-speed application because of this. 

While it was noted that the proposed model was able to 

reduce the energy needed for communication by 8.5% when 

compared with GTCC [5], 16.4% when compared with DP CCP 

[14], and 12.5% when compared with RLTC [27] even under 

congestions, in terms of energy consumption levels. The use 

of residual energy levels during multipath estimations via 

BFO and consideration of consumed energy levels in the GA 

process are the causes of this energy reduction. The model is 

advantageous for high-lifetime application scenarios as a 

result. 

When the proposed model was compared to GTCC [5], DP 

CCP [14], and RLTC [27] in terms of data rate, it was found 

that it was able to increase communication throughput even 
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in the presence of congestion by 19.3%, 14.2%, and 10.4%, 

respectively. The use of temporal data rate during multipath 

estimations via BFO and consideration of current throughput 

in the Q-Learning process are the causes of this increase in 

throughput. The model is useful in high-data-rate application 

scenarios as a result. While it was noted that the proposed 

model was able to improve the communication PDR by 8.3% 

when compared with GTCC [5], 9.2% when compared with DP 

CCP [14], and 6.4% when compared with RLTC [27] even 

under congestions in terms of packet delivery performance. 

The use of packet delivery performance during multipath 

estimations via BFO and consideration of current PDR levels 

in the Q-Learning process are responsible for this 

improvement in PDR. The model is helpful for high-

consistency application scenarios as a result. These 

evaluations show that the proposed model, even with 

different rates of congestion, is very helpful for a wide range 

of real-time routing scenarios. 

In future, the efficiency of proposed model must be validated 

under different network scenarios, and can be improved via 

use of transformer models for pre-emption of network 

congestions. This performance can also be improved via use 

of deep-learning based techniques, which will assist in 

enhancing QoS performance via finer selection of paths even 

under large-scale congestions. 
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