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Abstract:
The probability of packet collisions increases exponentially
w.r.t. number of communications due to which design of
collision-control protocols is of primary importance for
large-scale wireless networks. Existing collision control
models either showcase high complexity, or have slower
response, due to which their efficiency levels are limited
for larger networks. Moreover, most of these models
cannot be scaled due inherent computational
redundancies. To overcome these issues, this text
proposes design of a novel multipath routing model for
reducing network collisions via incremental bioinspired
optimizations. The proposed model initially deploys a
Bacterial Foraging Optimizer (BFO) for segregating packets
into multipath requests. This segregation is done based on
temporal routing performance for different set of paths.
The segregated packets are transmitted over the network
via an efficient set of multiple paths which are identified
by Genetic Algorithm (GA) optimizations. The selected
paths are incrementally tuned by a Q-Learning based layer,
that assists in reducing collisions under large number of
packet requests. This is done via temporal evaluation of
network parameters, and continuous model updates for
high-efficiency operations. The proposed model was
tested under large-scale networks with heterogeneous
requests, and it was observed that the model was able to
improve communication speed by 8.5%, reduce energy
consumption by 6.4%, maintain high packet delivery
performance and improve data rate by 3.9% when
compared with existing multipath routing protocols that
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support congestion control for large-scale network
scenarios.
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1. Introduction

Individual wireless sensors with built-in communication
capabilities constitute wireless sensor networks (WSNs).
These sensor nodes collect environmental information,
which is subsequently sent to the sink node via the ad hoc
network protocol that uses Multi-Agent Deep Reinforcement
Learning Congestion Control (MA RL CC) [1, 2, 3, 4] Wireless
sensor networks (WSNs) are often recognized as one of the
Internet of Things' most vital components. WSNs have
several applications, including monitoring  natural
ecosystems, averting natural disasters, managing automated
systems, and in the medical and health care areas. The
Internet of Things has several opportunities for WSN use. The
need for wireless sensor networks (WSNs) across a range of
sectors is increasing, as is the requirement to execute
multiple application tasks for those organizations inside the
same networks. Similar to the soil monitoring system used in
contemporary agriculture via Game Theory Based Congestion
Control (GTCC) [5, 6], The Sink gets continual data on the
physiological status of the surrounding area. Considering the
limited time available, this knowledge is crucial. The
temperatures must be supplied to the Sink as quickly as
physically feasible, since they indicate the current
environmental conditions. As the number of sensor nodes in
the monitored environment increases, it becomes evident
that the statistics are not very accurate, despite their use for
the application. The production of non-periodic sensed data
and the occurrence of the triggered event occur when the
monitored value exceeds or deviates from the threshold
value. For this data to be sent successfully, there can be only
a little amount of lag delays [7, 8, 9]. There is a possibility that
the information generated in response to a user query will
have certain characteristics. In addition, the Sink must
receive media data that is given with more precision, such as
a freshly taken image. Due to this, contemporary WSNs are
collaborative systems used to execute many applications
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concurrently [10, 11, 12]. In addition, each of these apps has
distinct quality of service needs and creates a distinct variety
of data flow (QoS). Multiple sensor nodes provide their data
to a single central processing unit, also known as a sink, which
receives the majority of the data produced by WSNs.
Frequently, each sensor node use the routing strategy to
decide which node should serve as its parent. The structure
of the network resembles a tree. When the bandwidth
capacity of the topology tree is surpassed by the amount of
data load, network congestion is obvious. When all of the
data from the nodes is sent to the Sink, this occurs.
Congestion has several effects on a network, including a
reduction in throughput, an uneven distribution of data, an
increase in the frequency of packet loss, and an increase in
wait times. Because of unnecessary packet retransmissions,
the node's resources are managed inefficiently. In addition, it
will impair the network's capacity to endure for an extended
term. Multiple types of data traffic attempt to transmit as
many packets as possible without regard for the available
capacity, resulting in congestion. Congestion may be
decreased and avoided in real-time circumstances if diverse
forms of data traffic work together to use network resources.

This part is followed by a comprehensive analysis of these
models, which demonstrates that the high complexity or
sluggish reaction times of present collision management
strategies restrict their usefulness in networks with more
nodes. This section is now finished. Moreover, the majority
of these models are not scalable due to the computational
redundancies they include. The third component of this study
provides a solution in the form of a unique multipath routing
model with the objective of minimizing the frequency of
network collisions via bio-inspired enhancements. The
performance of the model is examined in a variety of real-
world settings in Section 4, which discusses model validation.
Finally, some concluding remarks and proposals for
enhancing the model presented for application in large-scale
situations are provided to scale the model under real-time
scenarios.

2. Literature Review

Various techniques and algorithms [13, 14, 15] have been
developed over the last many years to alleviate WSN
congestion that use Delay-based Path-specified Congestion
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Control Protocol (DPCCP). When a transient surge in demand
exceeds the transmission capacity of a network resource,
congestion is often the outcome. Therefore, resource
management and traffic control are two methods that may
be used to reduce traffic volume. In the case of congestion,
the first option includes rerouting data packets to the Sink
through routes with lower traffic densities. It is likely that
increasing the number of active nodes, routing paths,
transmission distance, and capacity in wireless networks
might assist alleviate congestion in these networks. As an
example, work in [16, 17, 18] employs an approach for
topology-aware resource adaptation as its central
component. This strategy is based on the results of a model
for capacity analysis that assesses the capacity of a variety of
topologies. The most fundamental weakness of this strategy
is that it requires expertise not just with locally accessible
resources, but also with those accessible throughout the
whole network [19, 20]. Working with wireless connections
poses a variety of obstacles, one of which is the inability to
deal with this problem simply. In contrast to the resource
management approach, the traffic control strategy aims to
alleviate traffic congestion by adjusting the amount of traffic
at the origin or hub node. This is done to decrease the time
spent sitting in traffic. When the demands on the network's
resources approach or beyond the network's capacity, the
traffic management will restrict the number of injected
packets in order to relieve congestion. [21, 22, 23, 24] details
the implementation of the end-to-end control strategy.
Reactive end-to-end control is seldom used in protocols and
algorithms since it is reliant on the round-trip time between
the source and sink nodes. This is due to the difficulty of
implementing the approach. The hop-by-hop control
mechanism is now the most common method of operation
due to its dispersed control style and quicker response time.
The Priority-Based Congestion Control System is a hop-by-
hop congestion control system created specifically for
wireless sensor networks that uses Reinforcement Learning-
Based Transmission Control (RLTC) [25, 26, 27, 28]. The
severity of the problem is assessed, and a priority index is
utilized to define how each system bottleneck should be
managed. The density of a network may be estimated by
examining both the inter-arrival and service times of the
packets. For each and every node, a unique index has been
created. A node with a higher priority index will have access
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to a larger quantity of transmission capacity. When a node in
HRTC [14] detects congestion, a back pressure message is
sent and a report is created. By decreasing the pace at which
data travels across the network, network nodes assist
alleviate congestion. Despite the recent incorporation of
game theory into the hop-by-hop control mechanism, early
findings show that it is the most effective method for
minimizing congestion. The application of game theory to
traffic congestion management (GTCC) [15, 16]. Monitoring
the packet transmission rate enables the discovery of
congestion. The parent node will send out congestion alerts,
and the children will use game theory to evaluate if they
should move parents. This control protocol simplifies the
process of integrating the complex routing topology into the
routing algorithm. The GTCCF [29, 30] proposes utilizing
game theory as the foundation for a new paradigm for
managing congestion. A network is considered to be
congested when child nodes broadcast an excessive quantity
of data packets to their parent node at a rapid rate. To
discover a solution to this bottleneck, we may imagine each
child node as a player in a game in which there are no victors
or losers. In the non-cooperative game, the reproduction rate
of each child node is boosted to its maximum level. In the
present competitive market, neither the legally prescribed
minimum charge nor the quality of the service are taken into
consideration. The quality of service cannot be maintained
when the rate solution of the Nash equilibrium is lower than
the minimal rate. Although hop-by-hop congestion
management has the ability to alleviate network congestion,
its design does not always account for QoS requirements and
avoidance. In an effort to simultaneously enhance these two
components, swarm intelligence optimization is being used.
The technique described in [31, 32] is inspired by the flocking
behavior of birds in order to guide data packets toward
unused nodes and away from occupied nodes. When
transferring data to the Sink, the recommended method
prioritizes paths with lower traffic levels. Due to the
unpredictability of bird flocking and the height of the
landscape above, it is impossible to determine the optimal
route. Ant Colony Optimization (ACO) is an additional leading
optimization method. [33, 34] It is a very effective heuristic
stochastic optimal strategy. The efficiency of the feedback
loop is enhanced by the improvements made by the ACO.
Using persistent pheromone analysis, the most effective line
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of action is determined. The ACO has found widespread use
in the solution of combinatorial problems, including global
multi-object optimization and complex network routing, to
mention just two examples. Due to their symbiotic
connection, congestion management and routing issues in
WSNs are ideal candidates for the ACO's distributed
computing mode and low computational cost. MS-ACO refers
to a system that simultaneously tackles congestion concerns
and meets quality of service standards. When the MS-ACO
detects congestion, it assumes a very pessimistic view of the
situation and modifies the path accordingly. Despite its
significant energy consumption, the bulk of this technology's
applications are in next-generation networks. The ARCC's [35,
36] usage of the PCCP protocol helps to alleviate congestion.
The first step in the ACO procedure is finding the most direct
path from the origin to the ultimate destination. Second, the
Sink's artificial ants analyze the level of congestion and use
PCCP to resolve the problem. Although this approach is
analogous to the ACO and PCCP, it does not account for the
need of data categorization scenarios.

3. Proposed hybrid Bioinspired Model for improving
Routing performance of Energy aware Wireless Sensor
Networks

According to an analysis of the current congestion control
models, it can be seen that these models either exhibit high
complexity or have slower response times, which limits their
efficacy for larger networks. Furthermore, because of built-in
computational redundancies, the majority of these models
cannot be scaled. This section suggests designing a novel
multipath routing model to address these problems by
decreasing network collisions through gradual bio-inspired
optimizations. The proposed model first deploys a Bacterial
Foraging Optimizer (BFO) to separate packets into multipath
requests, as shown in the model's flow diagram in figure 1.
This division is based on the effectiveness of temporal routing
for various sets of paths. The network's efficient set of
multiple paths used for the transmission of the separated
packets is determined by Genetic Algorithm (GA)
optimizations. A Q-Learning layer that is based on the
selected paths incrementally fine-tunes them helps prevent
collisions when a lot of packet requests are made. For high-
efficiency operations, this is accomplished through the
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temporal evaluation of network parameters and ongoing

model updates.

Thus, the model initially collects network information sets,

node information sets & communication parameter sets for
identification of multipath routes. These routes are evaluated
via a Bacterial Foraging Optimizer (BFO), that works as per

the following process,

e Setup the following Bacterial Foraging constants,

A set of reconfigurable Bacterium (NB)

o An iterative set of rounds for reconfiguring these

Bacterium (NI)

o Rate of social learning for the Bacterium (L)

A set of source & destination nodes (S, D)
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Figure 1. Design of a Dual-bioinspired Model for congestion

control routing operations

e To start the optimizer, calculate a reference distance via

equation 1,
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dref = \/(Xs - Xd)z —(ys — Yd)z - (D)

Where, x & y are the Cartesian co-ordinates of the source &
destination nodes.

e Based on this distance metric, identify nodes that satisfy
equation 2,

d(src,node) < der & d(node, dest) < dpef - (2)

Where, d(i,j) represents distance between i&j nodes.
Because of this condition, all nodes that are between source
& destination can be identified, and used for multipath
routing operations.

e From this set of nodes, stochastically (STOCH) select a
set of nodes via equation 3, which represents a single
Bacteria particle,

Nsel = Lse1[STOCH(1, Size(Lgep))] --- (3)

Where, Ny is the selected set of nodes, while Lgg¢ is the list
of nodes that are currently between source & destination
nodes.

e This select is done only if consecutively selected nodes
have lower distance from destination, than previously
selected nodes.

e Once the node sets are selected, then a BFO fitness is
calculated via equation 4,

1 dyef E; THR(i)
B z [di+1’i+MaX(E) Max(THR)
PDR(i) FTM;
100 | Max(FTM)

(4)

Where, di,]- represents Euclidean distance between nodes, E;
represents residual energy of the node, THR & PDR
represents their previous throughput and packet delivery
ratio levels. In this equation the feedback trust metric (FTM)
is initialized as 1, and updated in equation 17 via feedback
operations.
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= Repeat this process for all Bacterium, so that initial
routing paths are generated between selected set of
source & destination nodes.

= After estimation of these paths, calculate a Bacterium
fitness threshold via equation 5,

NB
£ —Zf e )
th = 1 bi * g
i=

e Bacterium with f> f; are reproduced in the next
iteration, while others are eliminated from the current
set of iterations.

e All eliminated bacterium are regenerated via equations 3
& 4, which assists in identification new routing paths.

e Repeat this process for NI iterations, and generate NB
different routing paths.

Once the iterations are completed, then all Bacterium with
fy > fi, are selected and used for congestion control
operations. To perform this task, a Genetic Algorithm (GA)
based optimization process is used, which assists in
identification of highly efficient routing paths even under
congestions. This GA Model works as per the following
process,

Initialize the following constants for GA optimizer,

Total count of iterations that will be used for
reconfiguration (Nj)

Total count of reconfigurable solutions (Ny)

Rate at which these solutions will mutate (L,)

Set of paths provided by the BFO process (Sgro)

Total count of packets that has to be communicated
between the nodes (NP)

Based on these constants, a set of N solutions are initially
generated using the following operations,

Stochastically select a set of routing paths from the Sgro
list, and evaluate the per-path packet count via equation 6,

NP

pPC = N[Sgro(SeD)]

.. (6)

Where, N[Sgro(Sel)] represents the total number of routing
paths that are selected stochastically for multipath routing
operations.

2800



Journal of Namibian Studies, 35 S1 (2023): 2792-2815 ISSN: 2197-5523 (online)

o Segregate the packets among these paths via equation 7,
NP; = PPC = PQ; ...(7)

Where, N P; are the total packets that will be transmitted on
the given path, and PQ is the path quality, which is estimated
via equation 8,
Nc¢
1 PDR;
PQ= N_C; 100 * N(Collisions); ®

Where, PDR represents packet delivery ratio for this path
and is estimated via equation 9, and N(Collisions)
represents total number of collisions that occurred on this
path during the previous N. communications.

P,

PDR = == ...(9)

Ptx
Where, P & P represents the total number of packets
transmitted & received by nodes during individual
communications.

o Based on this segregation, simulate the routing process,
and estimate solution fitness via equation 10,

N[Sgro(SeD)]

1 i e 1

fs = N[Sgro(SeD)] ; Max(D) + Max(e) + PQ;
Max(THR

;. Max(THR)

(1
THR; (10)

Where, D is the delay needed to perform these
communications and is evaluated via equation 11, e
represents the energy needed for these communications and
is calculated via equation 12, THR represents the temporal
throughput during these communications and is calculated
via equation 13,

D= TS<:omplete — TSstart - (11)

Where, TScomplete & TSstart represents the timestamp for

completing and starting the communications.

e = Egtart — Ecomplte - (12)

2801



Journal of Namibian Studies, 35 S1 (2023): 2792-2815 ISSN: 2197-5523 (online)

Where, Egtart & Ecomplete represents the initial residual
energy of node before starting communications, and final
energy of node after completing the communications.

P
THR = g...(m)

o Such solutions are generated, and a fitness threshold is
evaluated via equation 14,

Ng
1
fy = N_Zfsi « Ly ... (14)
Si=1

e All solutions with f> f;, are discarded in current
iteration and mutated via equations 7 to 10, while other
solutions are cross overed to the next set of iterations.

e This process is repeated for N; iterations, and in each
iteration a set of Ng multipath solutions are reconfigured
for collision-aware routing operations.

Once all iterations are completed, then set of paths selected
by the solution with minimum fitness are used for the routing
process. Due to which the model is able to select routing
paths with low congestion and high-fidelity performance
under large-scale traffic scenarios. The selection process is
further optimized via a Q-Learning based tuning process,
which estimates the Q value for each of the multipaths via
equation 15,

1 (PDR THR

Q= N(Collisions) \ 100 + MaX(THR)) ..(15)

Where, PDR & THR are estimated in real-time for individual
paths. This value of Q value is continuously evaluated for each
communication, and a reward function is estimated via
equation 16,

Q(New) — Q(Previous)
r=
Ly
+ Q(Previous) ... (16)

- LrMaX(Q)

If this reward factor r = 1, then it indicates the Q values are
either constant or are improving, while r < 1 indicates that
Q values are reducing, thus the path requires corrections. To
perform these corrections, the BFO & GA Models are
reiterated by considering current node as source node, and
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re-evaluating multiple paths towards destination node from
current set of nodes. Due to this reconfiguration, the number
of collisions is reduced, and Quality of Service (QoS) is
improved for heterogeneous communications. Paths that do
not require reconfiguration are fed-back to the routing
database, and are used in future for high-speed path
selection & communication operations. For the nodes
present in this path, a feedback trust metric is modified via
equation 17,

FTM;(New) = FTM;(0ld) + N[Sgpo(SeD)] * Ly ... (17)

This updated FTM is used in the previous equations in order
to improve quality of path selection, thus assisting in
reducing number of congestions and enhancing QoS levels.
Performance of this model was evaluated on a standard
simulation scenario, and compared with existing models in
the next section of this text.

4, Statistical Analysis

The proposed MRCIB model initially deploys a Bacterial
Foraging Optimizer (BFO) for segregating packets into
multipath requests. This segregation is done based on
temporal routing performance for different set of paths. The
segregated packets are transmitted over the network via an
efficient set of multiple paths which are identified by Genetic
Algorithm (GA) optimizations. The selected paths are
incrementally tuned by a Q-Learning based layer, that assists
in reducing collisions under large number of packet requests.
This is done via temporal evaluation of network parameters,
and continuous model updates for high-efficiency
operations. The proposed model was tested under large-
scale networks with heterogeneous requests. To perform
these tests, the following simulation settings mentioned in
table 1 were used, which assisted in evaluating the network
under standard network conditions via the NS2 (Network
Simulator 2.34) platform, which is a standardized toolkit for
evaluating network performance levels.

Parametric Network Settings Value for the settings
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Propagation model used during communications Dual rays with wireless communications

Protocol used for MAC Layer 802.16a

Type of Queue Drop Tail Queue with Packet Priorities

Total network nodes 1000

Underlying protocol used for routing operations TORA (Temporally Ordered Routing
Algorithm)

Network Dimensions 2km x 2km

Energy consumed by nodes during idle mode 0.05 mW

Energy consumed by nodes during reception mode 1.5 mwW

Energy consumed by nodes during transmission mode 3mw

Energy consumed by nodes during sleep mode 0.001 mW

Energy consumed by nodes during transitioning between | 0.2 mW

modes

Delay needed by nodes for transitioning between modes 0.01s

Initial energy levels 0.2wW

Table 1. Simulation configuration of the network for
estimating model performance levels

As per these configurations, the model evaluated for
different number of communications (NC), and its QoS
metrics including communication delay (D), energy needed
during communication (E), throughput obtained during
communication (T), and packet delivery ratio (PDR) during
these communications was evaluated and compared with
GTCC[5], DP CCP [14], and RLTC [27] under similar simulation
conditions. For each of these communications, traffic
congestion was varied between 1% to 20%, and average
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communication delay obtained after these communications

was estimated, and tabulated in table 2 as follows,

NC D (ms) D (ms) D (ms) D (ms)
GTCC [5] DP CCP [14] RLTC [27] MRC IB
250 1.08 1.35 1.43 0.69
500 1.14 1.43 1.52 0.73
750 1.20 1.53 1.64 0.79
1000 1.29 1.71 1.85 0.91
1250 1.48 2.01 2.19 1.08
1500 1.78 2.43 2.64 1.29
1750 2.17 291 3.13 1.53
2000 2.56 3.38 3.61 1.76
2250 2.93 3.83 4.08 1.98
2500 3.29 4.28 4.56 2.22
3125 3.66 4.80 5.11 2.47
3500 4.00 5.29 5.63 2.70
3750 4.29 5.72 6.09 2.89
4375 4.59 6.15 6.54 3.09
4750 4.86 6.52 6.93 3.28
5000 5.18 6.93 7.36 3.49

Table 2. Delay needed for communication during 1% to 20% congestions
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Figure 2. Delay needed for communication during 1% to 20%
congestions

As per these evaluations and their visualization in figure 2, it
was observed that the proposed model was able to improve
the communication speed by 9.4% when compared with
GTCC [5], 14.5% when compared with DP CCP [14],and 19.2%
when compared with RLTC [27] even under congestions. The
reason for this improvement in speed is use of delay &
distance metrics during evaluation of routing paths via the
BFO & GA processes. Due to which the model is useful for
high-speed application scenarios. Similarly, the energy
needed for communication can be observed from table 3 as

follows,
NC E (m)) E (m)) E (m)) E (m))
GTCC [5] DP CCP [14] RLTC [27] MRC IB
250 2.66 4.53 3.88 1.92
500 2.86 4.83 4.13 2.03
750 3.02 5.09 4.35 2.14
1000 3.18 5.34 4.56 2.24
1250 333 5.58 4.76 2.34
1500 3.47 5.82 4.97 2.45
1750 3.62 6.11 5.22 2.58
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2000 3.79 6.43 5.50 2.72
2250 3.98 6.78 5.79 2.86
2500 4.19 7.11 6.06 2.98
3125 4.39 7.40 6.29 3.09
3500 4.57 7.67 6.51 3.20
3750 4.75 7.94 6.74 331
4375 4.92 8.22 6.98 3.43
4750 5.09 8.50 7.22 3.55
5000 5.25 8.79 7.45 3.66

Table 3. Energy needed for communication during 1% to 20%
congestions
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Figure 3. Energy needed for communication during 1% to 20%
congestions

As per these evaluations and their visualization in figure 3, it
was observed that the proposed model was able to reduce
the energy needed for communication by 8.5% when
compared with GTCC [5], 16.4% when compared with DP CCP
[14], and 12.5% when compared with RLTC [27] even under
congestions. The reason for this reduction in energy is use of
residual energy levels while multipath estimations via BFO &
consideration of consumed energy levels in the GA process.
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Due to which the model is useful for high-lifetime application
scenarios. Similarly, the throughput obtained during
communication can be observed from table 4 as follows,

NC T (kbps) T (kbps) T (kbps) T (kbps)
GTCC [5] DP CCP [14] RLTC [27] MRCIB
250 315.3 371.4 416.1 495.9
500 317.9 374.5 419.6 500.0
750 320.5 377.6 423.1 504.3
1000 3233 380.9 426.8 508.6
1250 326.1 384.1 430.4 512.9
1500 328.8 387.3 434.0 517.1
1750 331.5 390.5 437.6 521.4
2000 334.2 393.6 441.1 525.6
2250 337.0 396.8 444.7 529.8
2500 339.7 400.1 448.3 534.1
3125 342.4 403.3 451.8 538.3
3500 345.1 406.4 455.3 542.5
3750 347.8 409.6 458.9 546.7
4375 350.5 412.7 462.4 550.9
4750 353.2 415.9 466.0 555.1
5000 355.9 419.1 470.5 559.4
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Table 4. Average throughput levels for communication during
1% to 20% congestions
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Figure 4. Average throughput levels for communication
during 1% to 20% congestions

As per these evaluations and their visualization in figure 4, it
was observed that the proposed model was able to improve
the communication throughput by 19.3% when compared
with GTCC [5], 14.2% when compared with DP CCP [14], and
10.4% when compared with RLTC [27] even under
congestions. The reason for this improvement in throughput
is use of temporal data rate while multipath estimations via
BFO & consideration of current throughput in the Q-Learning
process. Due to which the model is useful for high-data-rate
application scenarios. Similarly, the PDR obtained during
communication can be observed from table 5 as follows,

NC PDR (%) PDR (%) PDR (%) PDR (%)
GTCC [5] DP CCP [14] RLTC [27] MRC IB
250 80.66 80.29 81.20 88.50
500 81.34 80.96 81.88 88.76
750 82.01 81.64 82.57 89.51
1000 82.71 82.34 83.28 90.28
1250 83.43 83.04 83.98 91.04
1500 84.12 83.73 84.68 91.79
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1750 84.82 84.42 85.37 92.55
2000 85.51 85.11 86.07 93.30
2250 86.21 85.80 86.76 94.05
2500 86.90 86.49 87.46 94.81
3125 87.60 87.18 88.16 95.56
3500 88.29 87.86 88.85 96.32
3750 88.99 88.55 89.54 97.07
4375 89.68 89.23 90.23 97.82
4750 90.37 89.92 90.92 98.57
5000 91.06 90.60 91.62 99.32

Table 5. Average PDR levels for comm
to 20% congestions
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Figure 5. Average PDR levels for communication during 1% to

20% congestions

As per these evaluations and their visualization in figure 5, it

was observed that the proposed model

was able to improve

the communication PDR by 8.3% when compared with GTCC

[5], 9.2% when compared with DP CCP

[14], and 6.4% when

compared with RLTC [27] even under congestions. The

reason for this improvement in PDR is use of packet delivery
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performance while multipath estimations via BFO &
consideration of current PDR levels in the Q-Learning
process. Due to which the model is useful for high-
consistency application scenarios. As per these evaluations, it
can be observed that the proposed model is highly useful for
a wide variety of real-time routing scenarios even under
different rate of congestions.

5. Conclusion and future scope

A Bacterial Foraging Optimizer (BFO) is initially used by the
proposed MRCIB model to separate packets into multipath
requests. This division is based on the effectiveness of
temporal routing for various sets of paths. The network's
efficient set of multiple paths used for the transmission of the
separated packets is determined by Genetic Algorithm (GA)
optimizations. A Q-Learning layer that is based on the
selected paths incrementally fine-tunes them helps prevent
collisions when a lot of packet requests are made. For high-
efficiency operations, this is accomplished through the
temporal evaluation of network parameters and ongoing
model updates. The suggested model was evaluated in large
networks with diverse requests. When the proposed model
was validated in terms of communication delay, it was found
that it was able to increase communication speed even in
congested areas by 9.4% when compared to GTCC [5], 14.5%
when compared to DP CCP [14], and 19.2% when compared
to RLTC [27]. This increase in speed is attributable to the use
of delay and distance metrics during the BFO and GA
processes' evaluation of routing paths. The model is useful in
scenarios involving high-speed application because of this.
While it was noted that the proposed model was able to
reduce the energy needed for communication by 8.5% when
compared with GTCC [5], 16.4% when compared with DP CCP
[14], and 12.5% when compared with RLTC [27] even under
congestions, in terms of energy consumption levels. The use
of residual energy levels during multipath estimations via
BFO and consideration of consumed energy levels in the GA
process are the causes of this energy reduction. The model is
advantageous for high-lifetime application scenarios as a
result.

When the proposed model was compared to GTCC [5], DP
CCP [14], and RLTC [27] in terms of data rate, it was found
that it was able to increase communication throughput even
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in the presence of congestion by 19.3%, 14.2%, and 10.4%,
respectively. The use of temporal data rate during multipath
estimations via BFO and consideration of current throughput
in the Q-Learning process are the causes of this increase in
throughput. The model is useful in high-data-rate application
scenarios as a result. While it was noted that the proposed
model was able to improve the communication PDR by 8.3%
when compared with GTCC [5], 9.2% when compared with DP
CCP [14], and 6.4% when compared with RLTC [27] even
under congestions in terms of packet delivery performance.
The use of packet delivery performance during multipath
estimations via BFO and consideration of current PDR levels
in the Q-Learning process are responsible for this
improvement in PDR. The model is helpful for high-
consistency application scenarios as a result. These
evaluations show that the proposed model, even with
different rates of congestion, is very helpful for a wide range
of real-time routing scenarios.

In future, the efficiency of proposed model must be validated
under different network scenarios, and can be improved via
use of transformer models for pre-emption of network
congestions. This performance can also be improved via use
of deep-learning based techniques, which will assist in
enhancing QoS performance via finer selection of paths even
under large-scale congestions.
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