Some Separation Axioms In Nano Ideal Topological Spaces

J. Joycy Renuka¹ and Dr. J. Arul Jesti²

¹Research Scholar, Reg. No. 19212212092014,

²Assistant Professor,

Department of Mathematics, St. Mary's College
(Autonomous), Thoothukudi-628001,
(Affiliated to Manonmaniam Sundaranar University,
Abishekapatti-627012, Tirunelveli)

Tamil Nadu, India

¹renukajoycy@gmail.com ²aruljesti@gmail.com

ABSTRACT

The notion of nano ideal topological space was introduced by M. Parimala et al [6]. They studied its properties and characterizations. Also they introduced the concept of nano ideal generalized closed sets in nano ideal topological spaces and investigated some of its basic properties. The main goal of this work is to induct and study the properties of nIgsemi* T_0 -space, nIgsemi* T_1 -space, nIgsemi* T_0 -connected space and nIgsemi*Hausdroff space in nano ideal topological spaces and study its relationship with existing spaces. Further we obtain certain characterizations of these spaces.

Key Words: nano ideal topological spaces, $nIgsemi^*T_0$ -space, $nIgsemi^*T_1$ -space, $nIgsemi^*$ -connected space and $nIgsemi^*$ -Hausdroff space.

1. Preliminary

Definition 1.1 [1] A subset A of a nano ideal topological space (U, N, I) is said to be **nano ideal generalized semi*-closed** (briefly, nIgsemi*-closed) if $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is nano semi*-open. The family of all nIgsemi*-closed sets of U is denoted by nIgsemi*C(U, N, I) (or simply nIgsemi*C(U)).

Definition 1.2 [1] A subset A of a nano ideal topological space (U, N, I) is said to be **nano ideal generalized semi*-open** (briefly, nIgsemi*-open) if U - A is nIgsemi*-closed. The family of all nIgsemi*-open sets of U is denoted by nIgsemi*0(U, N, I)(or simply nIgsemi*0(U)).

Definition 1.3 [1] The nano I generalized semi*-closure of A is defined as the intersection of all nano I generalized semi*-closed sets containing A and it is denoted by nI generalized semi*-cl(A). i.e., nIgsemi*cl(A) = \cap {F : A \subseteq F \in nIgc(N). nI generalized semi*-cl(A) is the smallest nano I generalized semi*-closed set containingA.

Definition 1.4 [3] A map $f: (U, N, I) \rightarrow (V, M, J)$ is said to **be strongly nIgsemi*-open** if the image of every nIgsemi*-open set in U is nIgsemi*-open in V.

Definition 1.5 [2] A map $f: (U, N, I) \rightarrow (V, M, J)$ is called **nIgsemi*-continuous function**, if $f^{-1}(A)$ of each n-open set $A \subseteq (V, M, J)$ is a nIgsemi*-open set in (U, N, I).

Definition 1.6.[2] Consider two nano ideal topological spaces (U, N, I) and (V, M, J) and define a function $f: (U, N, I) \rightarrow (V, M, J)$. The function $f: (U, N, I) \rightarrow (V, M, J)$. The function $f: (U, N, I) \rightarrow (V, M, J)$ is a nIgsemi*-open set in (U, N, I) for every nIgsemi*-open set A in (V, M, J).

Definition 1.7 [7] A space U is called **nano-T**₁ (or N-T₁) for $x, y \in U$ and $x \neq y$, there exists a nano-open sets G and H such that $x \in G$, $y \notin G$ and $y \in H$, $x \notin H$.

Definition 1.8 [4] A nano topological space $(U, \tau_R(X))$ is said to be **nano-connected** if $(U, \tau_R(X))$ cannot be expressed as a disjoint union of two non-empty nano-open sets. A subset of $(U\tau_R(X))$ is nano-connected as a subspace. A subset is said to be nano disconnected if and only if it is not nano-connected.

Definition 1.9 [5] A space $(U, \tau_R(X))$ is said to be **nano-Hausdroff** if whenever x and y are distinct points of $(U, \tau_R(X))$, there exists disjoint nano open sets A and B such that $x \in A$ and $y \in B$.

Definition 1.10 [1] Every nano open set is nIgsemi*-open.

2. nIgsemi*T₀-Spaces

Definition 2.1. A nano ideal topological space U is said to be nIgsemi* T_0 -space if for each pair of distinct points x and y of U, there exists a nIgsemi*-open set containing one point but not the other.

Theorem 2.2. A nano ideal topological space U is a $nIgsemi^*T_0$ -space then $nIgsemi^*$ -closures of distinct points are distinct.

Proof. Let x and y be distinct points of U. Since U is $nIgsemi^*T_0$ -space, there exists a $nIgsemi^*$ -open set G such

that $x \in G$ and $y \notin G$. Consequently, U-G is a nIgsemi*-closed set containing y but not x. But nIgsemi*-cl $\{y\}$ is the intersection of all nIgsemi*- closed sets containing y. Hence $y \in nIgsemi*cl\{y\}$ but $x \notin nIgsemi*cl\{y\}$ as $x \notin U-G$. Therefore, nIgsemi*-cl $\{x\} \neq nIgsemi*cl\{y\}$. Hence nIgsemi*-closures of distinct points are distinct.

Theorem 2.3. If $f: U \rightarrow V$ is a bijection, strongly nIgsemi*-open and U is nIgsemi* T_0 -space, then V is also nIgsemi* T_0 -space.

Proof. Let y_1 and y_2 be two distinct points of V. Since f is bijective, there exist distinct points x_1 and x_2 of U such that $f(x_1) = y_1$ and $f(x_2) = y_2$ Since U is $nIgsemi^*T_0$ -space there exists a $nIgsemi^*$ -open set G such that $x_1 \in G$ and $x_2 \notin G$. Therefore $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \notin f(G)$. Since f is strongly $nIgsemi^*$ -open function, f(G) is $nIgsemi^*$ -open in V. Thus, there exists a $nIgsemi^*$ -open set f(G) in V such that $y_1 \in f(G)$ and $y_2 \notin f(G)$. Therefore V is $nIgsemi^*T_0$ -space.

3. nIgsemi*T₁-Spaces

Definition 3.1. A nano topological space U is said to be $\mathbf{nIgsemi}^*\mathbf{T_1}\text{-space}$ if for any pair of distinct points x and y, there exist a $\mathbf{nIgsemi}^*\text{-open}$ sets G and H such that $x \in G, y \notin G$ and $x \notin H, y \in H$.

Theorem 3.2. In a nano ideal topological space U, if singletons are nIgsemi*- closed sets then U is nIgsemi* T_1 -space.

Proof. Assume singletons $\{x\}$ and $\{y\}$ belongs to nIgsemi*-closed sets. Let x and $y \in U$ with $x \neq y$. Now $x \neq y$ implies $y \in U - \{x\}$. Hence $U - \{x\}$ is nIgsemi*- open set containing y but not x. Similarly, we can prove $U - \{y\}$ is nIgsemi*-open set containing x but not y. Therefore y is nIgsemi*y space.

Theorem 3.3. The property being $nIgsemi^*T_1$ -space is preserved under bijection and strongly $nIgsemi^*$ -open function.

Proof. Let $f: U \to V$ be bijective and strongly nIgsemi*-open function. Let U be a nIgsemi* T_1 -space and y_1, y_2 be any two distinct points of V. Since f is bijective there exist distinct points x_1, x_2 of U such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since U is a nIgsemi* T_1 -space, there exist nIgsemi*-open sets G and H such that $x_1 \in G, x_2 \notin G$ and $x_1 \notin H, x_2 \in H$. Therefore $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ and $y_1 = f(x_1) \notin f(H)$. Now f being strongly nIgsemi*-open, f(G) and f(H) are nIgsemi*-open

subsets of V such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and $y_2 \in f(H)$ and $y_1 \notin f(H)$. Hence V is nIgsemi* T_1 -space.

Theorem 3.4. If $f: U \to V$ is nIgsemi*- continuous injection and V is NT_1 then U is nIgsemi* T_1 -space.

Proof. Let $f: U \to V$ be nIgsemi*-continuous injection and V be NT_1 -space. Since the function f is injection, for any two distinct points x_1, x_2 of U, there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is NT_1 space, there exist nano open sets G and G in G is not that G is G, G and G and G is G and G is nigremi*-continuous, G is nigremi*-continuous, G is nigremi*-continuous, G is nigremi*-open sets in G is nigremi*-open sets G and G is nigremi*-open sets G i

Theorem 3.5. If $f: U \to V$ is nIgsemi*- irresolute injective function and V is nIgsemi* T_1 -space then U is nIgsemi* T_1 -space.

Proof. Let x_1, x_2 be pair of distinct points in U. Since f is injective there exist distinct points y_1, y_2 of V such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since V is nIgsemi* T_1 -space there exist nIgsemi*-open sets G and Y in V such that $y_1 \in G, y_2 \notin G$ and that $y_2 \in H, y_1 \notin H$. That is $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Since f is nIgsemi*-irresolute, $f^{-1}(G)$ and $f^{-1}(H)$ are nIgsemi*-open sets in U. Thus, for two distinct points x_1, x_2 of U there exist nIgsemi*- open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $x_1 \in f^{-1}(G), x_1 \notin f^{-1}(H)$ and $x_2 \in f^{-1}(H), x_2 \notin f^{-1}(G)$. Therefore U is nIgsemi* T_1 -space.

4. nIgsemi*- Connected Spaces

Definition 4.1 An nano ideal topological space (U, N, I) is called **nIgsemi*- connected** if (U, N, I) cannot be written as the disjoint union of two non empty nIgsemi*-open subsets of (U, N, I).

Example 4.2 Consider the universal set $U = \{a, b, c, d\}$, the approximation space $U/R = \{\{a\}, \{b\}, \{c, d\}\}, X =$ $\{b,d\}\subseteq U$ with the ideal $I=\{\phi,\{a\}\}$. The nano topology defined by U is $\tau_{R}(X) =$ $\{U, \varphi, \{b\}, \{c, d\}, \{b, c, d\}\}\$ and nIgsemi*-open sets are $\{\{b\}, \{c\}, \{d\}, \{c, d\}, \{b, d\}, \{b, c\}, \{b, c, d\}, U, \phi\}.$ Here (U, N, I) cannot be expressed as the union of two disjoint non empty nIgsemi*-open subsets of (U, N, I). Thus (U, N, I) is said to be nIgsemi*- connected.

Theorem 4.3. In nano ideal topological space U, nIgsemi*-continuous image of a nIgsemi*-connected space is nano connected.

Proof. Assume $f: (U, N, I) \to (V, M, J)$ be a contra nIgsemi*-continuous function. Let (U, N, I) be a nIgsemi*-connected space. We have to prove contra nIgsemi*-continuous image of a nIgsemi*-connected space U is nano connected. That is to prove V is nano connected. Suppose, let V be nano disconnected. Considering G and S are nano open sets which form a nano disconnection of V, $V = G \cup S$ where $G \cap S = \varphi$. Given that f is nIgsemi*- continuous, $U = f^{-1}(V)$. Since $V = G \cup S$, $U = f^{-1}(G \cup S) = f^{-1}(G) \cup f^{-1}(S)$. Here both $f^{-1}(G)$ and $f^{-1}(S)$ are non empty nIgsemi*-open sets in U. Additionally, $f^{-1}(G) \cap f^{-1}(S) = \varphi$. Therefore U is not nIgsemi*-connected. This is a contradiction. Hence V is nano connected.

Lemma 4.4. For an nano ideal topological space (U, N, I), U is $nIgsemi^*$ -connected if and only if the only subset of U which are both $nIgsemi^*$ -open set and $nIgsemi^*$ -closed set are the empty set φ and U.

Proof. Let G be a nIgsemi*-clopen subset of G. Then G is nIgsemi*-clopen set. Assume, G is nIgsemi*-connected. We have to prove G is either G or G. Suppose $G \neq \emptyset$ and G. Then G can be expressed as disjoint union of two non empty nIgsemi*-open subsets of both G and G-G, which is contradiction to G is nIgsemi*-connected. Hence the only subset of G which are both nIgsemi*-open set and nIgsemi*-closed set are the empty set and G.

Conversely, Assume the only subset of U which are both nIgsemi*-open set and nIgsemi*-closed set are the empty set φ and U. We have to prove U is nIgsemi*-connected. Suppose Assume U is nIgsemi*-disconnected. Then U = G \cup S where G and S are disjoint non empty nIgsemi*-open set subsets of U. By our assumption either G = φ or U which against the assumption G and S are disjoint non empty nIgsemi*-open subsets of U. Hence U is nIgsemi*-connected.

5. nIgsemi*-Hausdroff Spaces

Definition 5.1 A nano ideal topological space (U, N, I) is referred as a $\mathbf{nIgsemi}^*$ -Hausdroff space, if for any two points $x,y \in U$ and $x \neq y$ there corresponds two $\mathbf{nIgsemi}^*$ -open sets K and L such that $K \cap L = \phi$ and $x \in K, y \in L$.

Theorem 5.2. A nano Hausdroff Space is always a nIgsemi*-Hausdroff Space.

Proof: The conclusion that comes from the definition of nano Hausdroff space **a**nd by theorem 1.10, A nano open set is always a nIgsemi*-open set.

Theorem 5.3. Let (U,N,I) be a nano ideal topological space and (V,M,J) be $nIgsemi^*$ -Hausdroff space and if the function $f:(U,N,I)\to (V,M,J)$ be a $nIgsemi^*$ -irresolute and injective mapping, then U is a $nIgsemi^*$ -Hausdroff space.

Proof. Let $x,y\in U$ and $x\neq y$. Since f is injective, f(x),f(y) are the two distinct images of x and y. Due to the fact that V is a nIgsemi*-Hausdroff space, there corresponds two disjoint nIgsemi*-open sets K and L such that $f(x)\in K$ and $f(y)\in L$ and so $x\in f^{-1}(K)$ and $y\in f^{-1}(L)$. Given that f is nIgsemi*-irresolute and $K\cap L=\phi$ we obtain that $f^{-1}(K)$ and $f^{-1}(L)$ are the disjoint nIgsemi*-open sets in U that include the distinct points $x,y\in U$. Hence U is a nIgsemi*-Hausdroff space.

Theorem 5.4. If the function $f:(U,N,I) \to (V,M,J)$ is a nIgsemi*-continuous mapping injective mapping from nano ideal topological space (U,N,I) to nano Hausdroff space (V,M,J), then (U,N,I) is a nIgsemi*-Hausdroff space. **Proof.** Suppose $x,y \in U$ and $x \neq y$. Since f is a one-one mapping, The images of x and y are, respectively, f(x) and f(y), which are also distinct in (V,M,J). Since V is nano-Hausdroff Space, there corresponds nano-open sets K, L and $K \cap L = \varphi$ such that $f(x) \in K$ and $f(y) \in L$. This means that $f^{-1}(K)$ and $f^{-1}(L)$ are disjoint nIgsemi*-open sets of U as well as x belongs to $f^{-1}(K)$ and y belongs to $f^{-1}(L)$. Hence U is a nIgsemi*-Hausdroff Space.

Theorem 5.5. If $f: (U, N, I) \rightarrow (V, M, J)$ is nIgsemi*-continuous and bijective mapping from nIgsemi*-compact space (U, N, I) to nIgsemi*-Hausdroff space (V, M, J), then f is nIgsemi*-Homeomorphic.

Proof. It suffices to prove $f^{-1} = g: V \to U$ is nIgsemi*-continuous in order to prove that f is nIgsemi*-Homeomorphic. To do that, we first prove that pre image $g^{-1}(A)$ is nIgsemi*-open set (nIgsemi*-closed) in V for every nano open set A (nano closed set) in U. U - A is nano closed in U because A is nano open. So we have to prove $g^{-1}(U - A)$ nIgsemi*-closed in V. We may deduce that $g^{-1}(U - A) = V - f(A)$(1), since $g^{-1} = f$. To prove: f(A) is a nIgsemi*-open set in V. Since U is nIgsemi*-open cover. Additionally because V is nIgsemi*-Hausdroff, two disjoint nIgsemi*-open sets K and L exists

for any two distinct points $x,y\in U$ such that $f(x)\in K$ and $f(y)\in L$,. Each element of U is mapped to distinct elements V since f is bijective. Therefore for every nano open set A in U, f(A) is $nIgsemi^*$ -open in V. From (1) for every nano closed set in U, the pre image g is $nIgsemi^*$ -closed in V. As a result, $g=f^{-1}$ is a $nIgsemi^*$ -continuous mapping. Hence f is $nIgsemi^*$ -Homeomorphic.

Conclusion: In this paper, different types of separation axioms namely $nIgsemi^*T_0$ -space, $nIgsemi^*T_1$ -space, $nIgsemi^*$ - connected space and $nIgsemi^*$ -Hausdroff space in nano ideal topological spaces are introduced and studied. Basic properties and characterizations related to these sets are given.

References:

- [1] Arul Jesti, J & Joycy Renuka, J, 2020, 'Nano Ideal Generalised Semi*- Closed Sets in Nano Ideal Topological Spaces', Turkish Journal of Computer and Mathematics Education, vol 11, issue 3, pp. 2176-2184.
- [2] Arul Jesti, J & Joycy Renuka, J, 2022, 'Nano Ideal Generalised Semi*-Continuous and Irresolute Functions in Nano Ideal Topological Spaces', Journal of Fundamental & Comparative Research, vol VIII, issue 12, no. 11, pp. 23-30.
- [3] Arul Jesti, J & Joycy Renuka, J, 2023, 'A New Notion of Mappings in Nano Ideal Topological Spaces', Journal of Namibian Studies, Communicated.
- [4] Krishnaprakash, S, Ramesh, R & Suresh, R 2018, 'Nano-Compactness and Nano-Connectedness in Nano Topological Spaces', International Journal of Pure and Applied mathematics, vol. 119, no. 13, pp. 107-115.
- [5] Pandi, A, Thanavalli, G, Banumathi, K, Vijeyrani, VBA & Theanmalar, B 2018, 'New Types of Continuous Maps and Hausdorff Spaces in Nano Ideal Spaces', International Journal of Research in Advent Technology, vol. 6, no. 9, pp. 2490-2495
- [6] Parimala, M, Noiri, T & Jafari, S, 'New types of nano topological spaces via nano ideals'. Available from: https://www.researchgate.net/publication/315892279.
- [7] Sathishmohan, P, Rajendran, V, Dhanasekaran, PK & Brindha. S 2019, 'Further properties of nano pre- T_0 , nano pre- T_1 and nano pre- T_2 spaces', Malaya Journal of Matematik, vol. 7, no. 1, pp. 34-38.