Advancements, Challenges, And Prospects Of Artificial Intelligence Integration In Latin American Higher Education

Dr. Víctor Ángel Ancajima Miñan¹, Dra. María Alicia Suxe Ramírez²,
Dr. Carmen Lucila Infante Saavedra³,
Dr. Wilberto Fernando Rubio Cabrera⁴, Dr. Ricardo Edwin More Reaño⁵,
Dr. Luis Santiago García Merino⁶

¹https://orcid.org/0000-0002-3122-4512
 Universidad Católica Los Ángeles de Chimbote
 ²ORCID: https://orcid.org/0000-0002-1358-4290
 Universidad Católica Los Ángeles de Chimbote
 ³Universidad Nacional de Piura
 ORCID https://www.orcid.org/0000-0002-5772-8807
 ⁴Universidad Católica Los Ángeles de Chimbote
 ORCID https://www.orcid.org/0000-0002-3426-2768
 ⁵Universidad Cesar Vallejo
 ORCID https://orcid.org/0000-0002-6223-4246
 ⁶ORCID: https://www.orcid.org/0000-0001-9392-2474
 Universidad Católica Los Ángeles de Chimbote

Summary

A documentary review was carried out on the production and publication of research papers related to the study of the variables Artificial Intelligence and Higher Education. The purpose of the bibliometric analysis proposed in this document was to know the main characteristics of the volume of publications registered in the Scopus database during the period 2017-2022 by Latin American institutions, achieving the identification of 120 publications. The information provided by this platform was organized through graphs and figures categorizing the information by Year of Publication, Country of Origin, Area of Knowledge and Type of Publication. Once these characteristics have been described, the position of different authors towards the proposed theme is referenced through a qualitative analysis. Among the main findings made through this research, it is found that Mexico with 38 publications was the Latin American country with the highest scientific production registered in the name of authors affiliated with institutions of

that nation. The Area of Knowledge that made the greatest contribution to the construction of bibliographic material referring to the study of Artificial Intelligence and Higher Education in Latin America was Computer Science with 85 published documents, and the Type of Publication most used during the period indicated above were Conference Articles with 62% of the total scientific production.

Keywords: Artificial Intelligence, Higher Education, Latin America.

1. Introduction

In the panorama of the rapid evolution of higher education, the proper implementation of artificial intelligence has emerged as a transformative force which has allowed to evolve and change the traditional paradigms implemented in this sector of education such as internal processes, administrative and as a fundamental pillar teaching and learning. The rapid deployment of artificial intelligence globally in academia has brought countless perspectives, forecasts remarkable breakthroughs and brings with it complex challenges. As we explore and deepen the realms of artificial intelligence in higher education, it is vitally important to examine the different diversified aspects that shape its journey, from its alterable capabilities to its importance in practice and ethics.

The implementation of artificial intelligence in higher education has marked a turning point which aims at the dissemination of knowledge, autonomous and personalized learning and administrative efficiency. It offers to redeem traditional teaching paradigms, getting students to base their learning experiences on a personalized education. However, the path to integrating artificial intelligences into education is not without challenges, including concerns about privacy, fairness and the possibility of job loss.

In this introduction, we will emphasize the perspectives posed by the adoption of artificial intelligence (AI) in higher education, shedding light on how teachers, students and different institutions perceive its role and its potential impact. We will also delve into the obvious technological advances made by AI, such as intelligence tutoring systems, virtual learning, data analysis and virtual reality, education without limitation of origin and its implications for educational expectations.

However, as we use the opportunities offered by artificial intelligence, we must face the challenges it poses. The ethical dilemmas posed by Al-driven decision-making, inequality in the digital divide, and the constant need to improve and retrain educational skills are issues that demand careful consideration. Balancing the benefits of AI and its ethical and social limitations and implications is a task that requires careful research.

In this wide-ranging exploration, we will explore the convergence of artificial intelligence and higher education, examine its promise, celebrate its progress, and address its challenges. In doing so, we seek to create a holistic picture of the changing relationship between AI and academia, providing insights into its transformative potential while recognizing the responsibility associated with this profound technological shift. For this reason, this article seeks to describe the main characteristics of the compendium of publications indexed in the Scopus database related to the variables Artificial Intelligence and Higher Education, as well. As the description of the position of certain authors affiliated with Latin American institutions, during the period between 2017 and 2022.

2. General Objective

Analyze from a bibliometric and bibliographic perspective, the elaboration and publication of research works in high-impact journals indexed in the Scopus database on the variables Artificial Intelligence and Higher Education during the period 2017-2022 by Latin American institutions.

3. Methodology

This article is carried out through a mixed orientation research that combines the quantitative and qualitative method.

On the one hand, a quantitative analysis of the information selected in Scopus is carried out under a bibliometric approach of scientific production corresponding to the study of the variables Artificial Intelligence and Higher Education. On the other hand, examples of some research works published in the area of study indicated above are analyzed from a qualitative perspective, starting from a bibliographic approach that allows describing the position of different authors against the proposed topic. It is important to note that the entire search was performed through Scopus, managing to establish the parameters referenced in Figure 1.

3.1. Methodological design

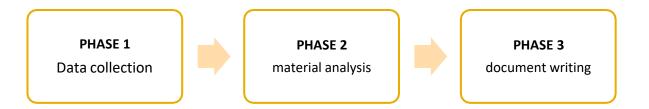


Figure 1. Methodological design

Source: Authors.

3.1.1 Phase 1: Data collection

Data collection was executed from the Search tool on the Scopus website, where 120 publications were obtained from the choice of the following filters:

TITLE-ABS-KEY (artificial AND intelligence, AND higher AND education) AND PUBYEAR > 2016 AND PUBYEAR < 2023 AND (LIMIT-TO (AFFILCOUNTRY , "Mexico") OR LIMIT-TO (AFFILCOUNTRY , "Colombia") OR LIMIT-TO (AFFILCOUNTRY , "Ecuador") OR LIMIT-TO (AFFILCOUNTRY , "Peru") OR LIMIT-TO (AFFILCOUNTRY , "Argentina") OR LIMIT-TO (AFFILCOUNTRY , "Chile") OR LIMIT-TO (AFFILCOUNTRY , "Cuba") OR LIMIT-TO (AFFILCOUNTRY , "Venezuela") OR LIMIT-TO (AFFILCOUNTRY , "Panama") OR LIMIT-TO (AFFILCOUNTRY , "Costa Rica"))

- Published documents whose study variables are related to the study of the variables Artificial Intelligence and Higher Education.
- Limited to the period 2017-2022.
- Limited to Latin American countries.
- Without distinction of area of knowledge.
- Regardless of type of publication.

3.1.2 Phase 2: Construction of analysis material

The information collected in Scopus during the previous phase is organized and subsequently classified by graphs, figures and tables as follows:

- Co-occurrence of words.
- Year of publication
- Country of origin of the publication.
- Area of knowledge.
- Type of publication.

3.1.3 Phase 3: Drafting of conclusions and outcome document

In this phase, we proceed with the analysis of the results previously yielded resulting in the determination of conclusions and, consequently, the obtaining of the final document.

4. Results

4.1 Co-occurrence of words

Figure 2 shows the co-occurrence of keywords found in the publications identified in the Scopus database.

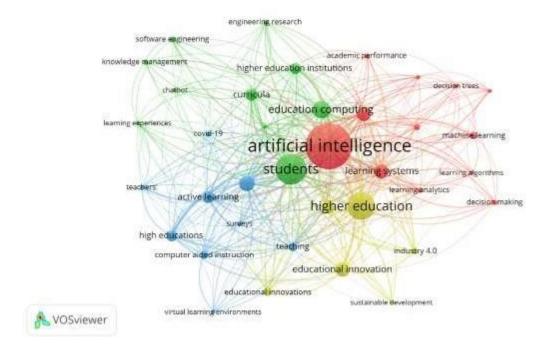
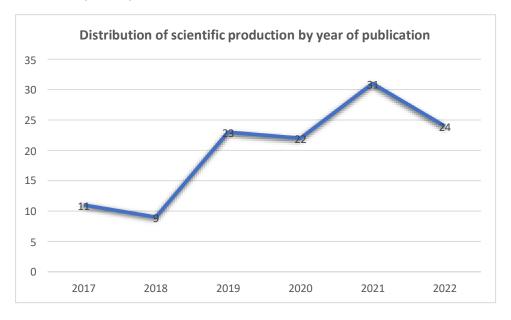


Figure 2. Co-occurrence of words


Source: Own elaboration (2023); based on data exported from Scopus.

Artificial Intelligence was the most frequently used keyword within the studies identified through the execution of Phase 1 of the Methodological Design proposed for the development of this article. Higher Education is also among the most frequently used variables, associated with variables such as Educational Informatics, Students, Learning Systems, Educational Innovation, Industry 4.0. From the above, it is striking the integration of artificial intelligence in higher education in a topic of great relevance today since the integration of this provides great interest and relevance in the education sector. Artificial intelligence has the potential to transform the way teaching has been conducted and with this achieve that higher institutions offer students different opportunities and benefits.

Importantly, the successful integration of artificial intelligence into higher education requires careful planning, teacher training, and ethical considerations. The privacy of student data and equal access to education are key issues that need to be addressed. All has great potential to improve the quality of higher education, but its implementation must be guided by clear educational objectives and strong ethical values.

4.2 Distribution of scientific production by year of publication

Figure 3 shows how scientific production is distributed according to the year of publication.

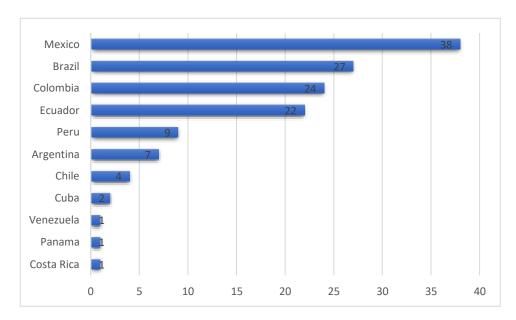


Figure 3. Distribution of scientific production by year of publication. **Source:** Own elaboration (2023); based on data exported from Scopus

Among the main characteristics evidenced by the distribution of scientific production by year of publication, a level of number of publications registered in Scopus is notorious in the years 2021, reaching a total of 31 documents published in journals indexed in said platform. This can be explained thanks to articles such as the one entitled "Artificial intelligence and legal education: its incorporation during the Covid-19 pandemic" The purpose of this study is to analyze the incorporation of artificial intelligence in the teaching of law at the university level during the COVID-19 pandemic. It is important because it recognizes the need for its incorporation, which would encourage reading, critical thinking, research culture and improve the academic performance of law students. A qualitative research was developed, with a nonexperimental design and exploratory level. An instrument was developed, which was validated using the Deplhi method. The instrument was applied to lawyers who work as professors in Peruvian universities. The results show the importance of the incorporation of technology, which allows a virtual education process, becoming a complementary tool in training processes, with which the replacement of teachers is feared. It was concluded that the incorporation of artificial intelligence in the training process of the law student is feasible because it would prioritize digital literacy.(Quezada Castro, 2022)

4.3 Distribution of scientific production by country of origin.

Figure 4 shows how scientific production is distributed according to the nationality of the authors.

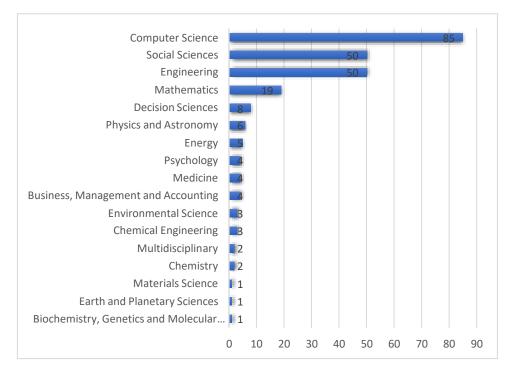


Figure 4. Distribution of scientific production by country of origin. **Source:** Own elaboration (2023); based on data provided by Scopus.

Within the distribution of scientific production by country of origin, records from Latin American institutions were taken into account, establishing Mexico, as the country of that community, with the highest number of publications indexed in Scopus during the period 2017-2022, with a total of 38 publications in total. In second place, Brazil with 27 scientific papers, and Colombia ranking third presenting to the scientific community, with a total of 24 papers among which is the article entitled "Artificial intelligence and legal education: its incorporation during the Covid-19 pandemic" This study examined the impact of artificial intelligence on higher education teaching and learning. This study focuses on the impact of new technologies on the learning of students and educational institutions. With the rapid adoption of new technologies in higher education, as well as recent technological advances, it is possible to forecast the future of higher education in a world where artificial intelligence is ubiquitous. Administration, student support, teaching and learning can all benefit from the use of these technologies; We identified some challenges that higher education institutions and students may face, and considered possible research directions.(Singh, 2022)

4.4 Distribution of scientific production by area of knowledge

Figure 5 shows the distribution of the elaboration of scientific publications from the area of knowledge through which the different research methodologies are implemented.

Figure 5. Distribution of scientific production by area of knowledge. **Source:** Own elaboration (2023); based on data provided by Scopus.

Computer Science was the area of knowledge with the highest number of publications registered in Scopus with a total of 85 documents that have based their variable methodologies Artificial Intelligence and Higher Education. In second place, Social Sciences with 50 articles and Engineering in third place with 12. The above can be explained thanks to the contribution and study of different branches, the article with the greatest impact was registered by the area of Communication Sciences entitled "Improve learning experiences in final courses of software engineering using virtual assistants of artificial intelligence" This study addresses this problem by using an artificial intelligence (AI) virtual assistant combined with a recommendation system. Artificial Intelligence Virtual Assistants, such as conversational chatbots, are a manifestation of AI by simulating conversations with human users. Technology has the potential to provide personalized service to a variety of stakeholders. Therefore, we seek to advance this trend

by bringing these capabilities into the field of higher education. Consequently, we aim to help software engineering students by leveraging collective knowledge to enhance learning experiences.(González, 2022)

5. Conclusions

Through the bibliometric analysis carried out in the present research work, it was established that Mexico was the country with the largest number of records published for the variables Artificial Intelligence and Higher Education, with a total of 38 publications in Scopus database. In the same way, it was established that the application of theories framed in the area of Communication Sciences, were used more frequently in the convergence of artificial intelligence and higher education since this promises to transform traditional learning experiences. Artificial intelligence technologies, such as machine learning, natural language processing and different data analysis, have the functionality of improving machine learning and thus providing educators from different higher level institutions with valuable information to improve academic performance. The promise of artificial intelligence in higher education includes the ability to tailor and enhance learning content to individual students, with the purpose of increasing student engagement and information retention. It can also facilitate adaptive learning, where AI systems adjust the pace and difficulty of lessons based on student performance and needs. In addition, artificial intelligence can help automate administrative tasks, freeing up time for educators to interact more meaningfully with students. One of the most important challenges is ensuring the ethical use of artificial intelligence and protecting student privacy. Institutions should develop clear guidelines and policies regarding the collection, storage and use of data. In addition, continuous professional development is needed to empower educators with the skills needed to effectively use AI tools and technologies.

In conclusion, while the integration of AI in higher education offers interesting opportunities to improve learning outcomes and administrative efficiency, it is also important to address the ethical, privacy and bias issues associated with AI. In this way, the institution can use the overall potential of AI, while providing this fair and inclusive learning environment to all students.

References

- Gonzalez, L. To.-M. (2022). Improve learning experiences in final software engineering courses using artificial intelligence virtual assistants. SANTIAGO CHILE.
- Quezada Castro, G. A. (2022). Artificial intelligence and legal education: their incorporation during the Covid-19 pandemic. PERU.
- Singh, S. V. (2022). Artificial intelligence and legal education: their incorporation during the Covid-19 pandemic. MEXICO.
- Al-Maskari, A., Al Riyami, T., & Ghnimi, S. (2022). Factors affecting students' preparedness for the fourth industrial revolution in higher education institutions. Journal of Applied Research in Higher Education, doi:10.1108/JARHE-05-2022-0169
- Bao, Y. (2022). Application of virtual reality technology in film and television animation based on artificial intelligence background. Scientific Programming, 2022 doi:10.1155/2022/2604408
- Bhavana, S., & Vijayalakshmi, V. (2022). Al-based metaverse technologies advancement impact on higher education learners. WSEAS Transactions on Systems, 21, 178-184. doi:10.37394/23202.2022.21.19
- Bisen, I. E., Arsla, E. A., Yildirim, K., & Yildirim, Y. (2021). Artificial intelligence and machine learning in higher education. Machine learning approaches for improvising modern learning systems (pp. 1-17) doi:10.4018/978-1-7998-5009-0.ch001 Retrieved from www.scopus.com
- Broberg, M. R., Khalifah, S., Gupta, A., & Nafakh, A. J. (2021). An evaluation of a university-level, high school course taught to foster interest in civil engineering (evaluation). Paper presented at the ASEE Annual Conference and Exposition, Conference Proceedings, Retrieved from www.scopus.com
- Devi, S., & Deb, S. (2017). Exploring the potential of tangible user interface in classroom teaching-learning. Paper presented at the 3rd IEEE International Conference on, doi:10.1109/CIACT.2017.7977368

 Retrieved from www.scopus.com
- Forndran, F., & Zacharias, C. R. (2019). Gamified experimental physics classes: A promising active learning methodology for higher education. European Journal of Physics, 40(4) doi:10.1088/1361-6404/ab215e
- Gupta, P., & Yadav, S. (2022). A TAM-based study on the ICT usage by the academicians in higher educational institutions of delhi NCR

doi:10.1007/978-981-16-9113-3_25 Retrieved from www.scopus.com

- Hasnine, M. N., Ahmed, M. M. H., & Ueda, H. (2021). A model for fostering learning interaction in hybrid classroom based on constructivism theory. Paper presented at the Proceedings 2021 10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021, 192-195. doi:10.1109/IIAI-AAI53430.2021.00034 Retrieved from www.scopus.com
- Hemachandran, K., Verma, P., Pareek, P., Arora, N., Rajesh Kumar, K. V., Ahanger, T. A.,.......... Ratna, R. (2022). Artificial intelligence: A universal virtual tool to augment tutoring in higher education. Computational Intelligence and Neuroscience, 2022 doi:10.1155/2022/1410448
- Herpich, F., Guarese, R. L. M., Cassola, A. T., & Tarouco, L. M. R. (2018).

 Mobile augmented reality impact in student engagement: An analysis of the focused attention dimension. Paper presented at the Proceedings 2018 International Conference on Computational Science and Computational Intelligence, CSCI 2018, 562-567. doi:10.1109/CSCI46756.2018.00114 Retrieved from www.scopus.com
- Hsu, W. -., Lin, H. -. K., & Lin, Y. -. (2017). The research of applying mobile virtual reality to martial arts learning system with flipped classroom. Paper presented at the Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 1568-1571. doi:10.1109/ICASI.2017.7988228 Retrieved from www.scopus.com
- Huan, L. J. (2020). Discussion on the application of artificial intelligence technology in the construction of physical education class in higher vocational college. Paper presented at the Proceedings 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2020, 297-300. doi:10.1109/ICBAIE49996.2020.00070 Retrieved from www.scopus.com
- Ilori, M. O., & Ajagunna, I. (2020). Re-imagining the future of education in the era of the fourth industrial revolution. Worldwide Hospitality and Tourism Themes, 12(1), 3-12. doi:10.1108/WHATT-10-2019-0066
- Isaiah, P. (2018). Model for the enhancement of learning in higher education through the deployment of emerging technologies. Journal of Information, Communication and Ethics in Society, 16(4), 401-412. doi:10.1108/JICES-04-2018-0036

- Karthikeyan, J., Prasanna Kumar, S. H., Rahman, M., & Ping, P. F. (2019). Review of mobile learning: Digitalization of classroom. Journal of Advanced Research in Dynamical and Control Systems, 11(12 Special Issue), 755-761. doi:10.5373/JARDCS/V11SP12/20193274
- Kerimbayev, N., Khotsov, V., Umirzakova, Z., Bolyskhanova, M., & Tkach, G. (2022). The use of chat-bot capabilities as A type of modeling in intelligent learning. Paper presented at the 2022 IEEE 11th International Conference on Intelligent Systems, IS 2022, doi:10.1109/IS57118.2022.10019627 Retrieved from www.scopus.com
- Kumar, A., Dey, R., Rao, G. M., Pitchai, S., Vengatesan, K., & Kumar, V. D. A. (2021).3D animation and virtual reality integrated cognitive computing for teaching and learning in higher education doi:10.3233/APC210252 Retrieved from www.scopus.com
- Lakshmi, G., Brindha, S., Revanya Devi, M., Divya, J., & Shobhanali, N. (2022). Al-powered digital classroom. Paper presented at the 2022 International Conference on Communication, Computing and Internet of Things, IC3IoT 2022 - Proceedings, doi:10.1109/IC3IOT53935.2022.9767944 Retrieved from www.scopus.com
- LeAnne Basinger, K., Alvarado, D., Ortega, A. V., Hartless, D. G., Lahijanian, B., & Alvarado, M. M. (2021). Creating ACTIVE learning in an online environment. Paper presented at the ASEE Annual Conference and Exposition, Conference Proceedings, Retrieved from www.scopus.com
- Li, C. (2022). Development of artificial intelligence campus and higher education management system under the background of big data and WSN. Paper presented at the Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022, 750-753. doi:10.1109/ICEARS53579.2022.9752451 Retrieved from www.scopus.com
- Li, J., Yang, Q., & Zou, X. (2019). Big data and higher vocational and technical education: Green food and its industry orientation. Paper presented at the ACM International Conference Proceeding Series, 118-123. doi:10.1145/3322134.3322150 Retrieved from www.scopus.com
- Murray, J. -. (2019). Massive open online courses: Current and future trends in biomedical sciences doi:10.1007/978-3-030-24281-7 5 Retrieved from www.scopus.com

- Ouherrou, N., Elhammoumi, O., Benmarrakchi, F., & El Kafi, J. (2019). Comparative study on emotions analysis from facial expressions in children with and without learning disabilities in virtual learning environment. Education and Information Technologies, 24(2), 1777-1792. doi:10.1007/s10639-018-09852-5
- Raffaghelli, J. E., Rodríguez, M. E., Guerrero-Roldán, A. -., & Bañeres, D. (2022). Applying the UTAUT model to explain the students' acceptance of an early warning system in higher education. Computers and Education, 182 doi:10.1016/j.compedu.2022.104468
- Rong, J. (2022). Innovative research on intelligent classroom teaching mode in the "5G" era. Mobile Information Systems, 2022 doi:10.1155/2022/9297314
- Sangree, R. H. (2022). Student performance, engagement, and satisfaction in a flipped statics and mechanics of materials classroom: A case study. Paper presented at the ASEE Annual Conference and Exposition, Conference Proceedings, Retrieved from www.scopus.com
- Smyrnova-Trybulska, E. (2019). E-learning evolution, trends, methods, examples, experience. Paper presented at the Multi Conference on Computer Science and Information Systems, MCCSIS 2019 Proceedings of the International Conference on e-Learning 2019, 155-162. doi:10.33965/el2019_201909f020 Retrieved from www.scopus.com
- Syzdykbayeva, A., Baikulova, A., & Kerimbayeva, R. (2021). Introduction of artificial intelligence as the basis of modern online education on the example of higher education. Paper presented at the SIST 2021 2021 IEEE International Conference on Smart Information Systems and Technologies, doi:10.1109/SIST50301.2021.9465974 Retrieved from www.scopus.com
- Tautz, D., Sprenger, D. A., & Schwaninger, A. (2021). Evaluation of four digital tools and their perceived impact on active learning, repetition and feedback in a large university class. Computers and Education, 175 doi:10.1016/j.compedu.2021.104338
- Wang, R., Li, J., Shi, W., & Li, X. (2021). Application of artificial intelligence techniques in operating mode of professors' academic governance in american research universities. Wireless Communications and Mobile Computing, 2021 doi:10.1155/2021/3415125

- Yang, X., & Cheng, Z. (2020). Discussion on the course of cultural creative catering space design in higher vocational colleges based on VR technology. Paper presented at the Journal of Physics:

 Conference Series, , 1533(2) doi:10.1088/1742-6596/1533/2/022114 Retrieved from www.scopus.com
- Zhang, Y., Wu, Y., Zheng, M., Lin, X., & Zhang, Y. (2019). He innovative education of 'smart finance' under the promotion of educational informationization. Paper presented at the BESC 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing, Proceedings, doi:10.1109/BESC48373.2019.8963551 Retrieved from www.scopus.com