

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1799

Optimizing Business Insights: An Enhanced

 Large-Scale RDF Query Processing And

Loading Speed On Big Data

1V.Naveen Kumar, 2Dr Ashok Kumar P S

1Research Scholar, Don Bosco Institute of Technology, Affiliated To

Visvesvaraya Technological University, naveenvipparla@gmail.com.
2Research Supervisor, Dept. of CSE, ACS College of Engineering,

Affiliated To Visvesvaraya Technological University,

 ashokdbit2017@gmail.com.

Abstract

The generic access pattern is the Resource Description

Framework (RDF), while SPARQL is a widely adopted query

processing framework for collecting information. Due to its

information adaptability and data modeling, this subject is

presently receiving greater attention. The basic RDF

structure is frequently used to supply web data through a

spectrum of uses, including social networks, organizations'

search engines, and other databases. A key component of

semantic web managing data is the effective deployment of

large-scale RDF querying. With the quicker growth of RDF

data, storing all RDF triples in a particular node in larger

datasets is frequently impossible. Due to this, researchers

are concentrating on SPARQL query processing in

distributed systems, particularly using the Hadoop system.

The effectiveness of SPARQL query processing is increased

by the application of the Map Reduce methodology. In this

paper, we developed an Improved Large Scale RDF (ILS-

RDF) for information partitioning to improve query

processing and loading in an effective way. With the

creation of ILS-RDF concepts and representations,

knowledge transfer transitioned from the ordinary web to

the semantic web. RDF is a widely used format for

representing and querying linked data, and optimizing its

processing on big data platforms requires careful

consideration of data storage, query optimization, and

integration with business tools. The proposed method uses

low-grade indexing and run-time indexing for the phrases in

the search to speed up data fetching and cut down on nodal

connection latency.

mailto:ashokdbit2017@gmail.com

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1800

Keywords: Improved Large Scale RDF; Large datasets;

Cloud storage; data partitioning; SPARQL; Big Data.

1. Introduction

The advantages of RDF data models regarding flexibility and

compatibility are being felt by several companies. Due to

the interoperability, getting RDF data from various sites is a

complicated task [1]. RDF is a triple-based notation that is

typically graph-based and comprises subjects, references,

and premises. A collection of triples that are described by

directed graphs may be found in the RDF [2]. Information

from RDF documents that have been saved and retrieved

using the SPARQL language. The triple patterns, also known

as the Basic Graph Pattern, are the basis for SPARQL

searches [3]. The BGP is used to extract the information

from the RDF documents. An additional sort of graph,

known as a query graph pattern, is included in SPARQL.

RDF data administration is the primary technique

underlying a semantic web repository. This method enables

the retrieval and storage of information from the network

[4]. Both academics and businesses are now researching

RDF data management. The architecture developed to

handle RDF information is known as Hexastore [5].

However, the single-system techniques became

problematic due to the rising RDF complexity.

Consequently, a stand-alone system is necessary to handle

the aforementioned problem [6]. Combined with the

adoption of traditional clustering techniques, other ways

have been created to deal with the scattered RDF data.

These techniques work well for improving the efficiency of

either query processing or information storage, however

not alike [7]. The technique for speeding up query execution

and information loading is presented in this paper. This was

accomplished using the single component indexing and run

time indexing techniques created for the proposed

technique's RDF data encoding and data fetching

mechanisms. The RDF query's assertions are transformed

into numerals to minimize the model's communication

burden.

The majority of RDF methods for analyzing data were

created using batch processing models. These systems

architectures are made to handle small datasets. These

approaches don't use any encoding or splitting strategies as

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1801

they immediately execute the query over the original data

[8–9]. This causes complicated systems to have a large

network latency. Subject-predicate-object triples are

represented as graphs in SHARD storage of RDF [10]. For

graph storing, it employs a distributed computing

technique. HDFS is used to hold information. Every triple

store line is saved as a different section in a text document

to enable data persistence [11]. While this method of

keeping triple data in flat files uses a large amount of

memory, it automates resiliency for data replication and

makes MapReduce processes possible over numerous

processors [12]. The RDF data takes some time to retrieve

using this approach.

YARS2, Indexing, and searching capabilities for graph-

structured data are provided via a distributed repository.

Local indexes are built even before the information is

added. The original data is condensed into documents that

are subject, predicate, and context-ordered (SPOC). After

that, a multi-way fusion is used to integrate all of the

documents. Every SPOC file has an inverted index

constructed for it [13]. Three techniques—random, hash, or

range—are used to divide the triples [14]. The indexes

comprise connect, quadruple, and keyword indexes.

Indexes, which enable multi-threaded inquiry and

responses between the query processors and index

administrator, are used to perform inquiries.

The efficiency of query processing can be enhanced by using

graph-based partitioning methods. To handle massive

graphs, Sedge is used [15]. Vertex-based divisions are used

to segment graphs. Replications and overlapping are both

enabled. The graph is segmented again using

complementary partitions, resulting in interior links along

the initial partition vertices. To distribute the burden, it

implements on-demand splitting, in which existing divisions

are duplicated or brand-new, overlapping partitions are

generated [16]. The workload is distributed using a two-

level partitioning approach.

2. Related Work

RDF simulates a storage graph for RDF. In the primary value

storage, the graph is arbitrarily divided into sections. The

standard sharing algorithm uses node-id hashing. It allows

for arbitrary queries to the RDF graph. To prevent

connections, it has created in-memory graph analysis

techniques [17–18]. The method utilized to discover the

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1802

similarities appears excessive. On graphs, it is simple to do

graph analyses including random walks, regular expression

queries, reachability enquires, proximity oracles, and

community searches [19]. The semantic Hash partitioning

strategy was employed by investigators [20]. Segmentation

makes use of the entire Hadoop framework. The cluster's

master node is in charge of segmentation, and the slave

node is in charge of keeping the pieces together.

The task scheduler creates the segments and delivers the

interim results of a combined inquiry, while the slave has

the retrieval of data that stores the information [21]. The

semantic partitioner is used by the job tracker to locate the

nodes where the segments will be stored, and the master

node contains a name node that holds summaries of the

divisions. Either the price of transmission or the complexity

of the network will rise as the graph is partitioned [22]. To

organize digital data based on the best choice of inbound

inquiries, the researcher identified an adaptive indexing

strategy. Many methods divide the request into the RDF

data using the graph partitioning methodology [23].EAGRE

was created to reduce the cost of the input and the output.

The graph was divided using the MiniCut technique by the

researchers.

The graph information is split using the METIS method using

H-RDF-3X. It takes advantage of the K-hop method, which

enables communication-free execution of queries inside the

k-radius [24]. However, designs like "SPARK" and

"Hadoop++" are unable to survive the complexity of several

computations employing the MapReduce method [25].

Scala is the foundation of the initial cluster computing

device known as Spark. The durable dispersed dataset that

is divided up over several machines is its major component

[26]. It shows the user for useful programming platform.

The durable dispersed datasets enable parallel computing

[27].On this RDD, simultaneous processes are carried out.

An RDD is represented by Scala objects, which can be

produced in several ways, including from an HDFS file, by

parallelizing the divisions across several instances, by

converting the RDDs, and by changing the durability of an

established RDD [28]. Minimize, aggregate, and for each are

just a few of the concurrent processes that may be done on

the dataset. The components of the dataset are combined

by minimizing, sent to the driver programme by gathering,

and iterated by for each in the user-defined procedure.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1803

By utilizing the underlying Hadoop architecture with HDFS

for collection and the MapReduce programming style for

query execution simultaneous, Hadoop++ presents a novel

method [29]. Units of the information are saved after being

divided laterally. The Hadoop publish technique is used for

archiving. The customer asked the namenode how many

vacant blocks are accessible. The customer keeps the

information in the data node, and the namenode provides

the block addresses. Hadoop's minimum recurrence ratio is

three. Consequently, the segments are triple-mirrored in

the data nodes [30]. Trojan index, a brand-new indexing

system, is also introduced. This is created concurrently with

large data and is unrelated to DBMS indexing methods. The

researchers' proposed SHAPE uses the semantic hashing

algorithm to divide the RDF data. It adopts the H-k-hop RDF-

3X's strategy, the simple partitioning method, and the idea

of semantic hash segmentation.

3. Proposed approach

The vast amount of ILS-RDF data highlights the value of

persistence. An improved design is needed for storage. The

prior studies covered the dispersed environments storage

structure for ILS-RDF data. The information must be

retrieved after it has been stored to be queried or updated.

It will require a long time to retrieve or write the

information immediately because it is in tera or petabytes.

To facilitate speedier accessibility, DBMSs create indexes for

the information. Indexes are supplementary accessible

entities that contain the result of the indexing column and

a block pointer. Information may be quickly found by using

indexes. The speed of the request is enhanced by an index

search that is part of the execution plan [31]. Indexing is the

following challenging assignment. The second major issue

that arises when information is sought is how to access it.

Therefore, query processing must be carried out effectively.

Since ILS-RDF information includes large strings, it is quite

practical to translate them into manageable ones. The

strings in ILS-RDF data are so big, performing queries on

them requires a lot of storage, uses a lot of network

capacity, and has poor query processing. To increase

efficiency, the ILS-RDF texts are transformed into linked IDs

in the proposed method and to develop APIs and web

services that allow business applications to interact

seamlessly with the RDF data store.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1804

The proposed system uses transformation procedures to

describe the ILS-RDF assertion, converts concepts in the RDF

assertion to variables, and encodes inputs using a

dictionary-based representational approach. Additionally,

Integrate RDF data with existing business technologies, such

as CRM systems, data warehouses, and reporting tools, to

provide a holistic view of data. The proposed technique,

shown in Figure 1, initially divides the information into

equal-sized blocks and distributes it to the member nodes

for calculation.

-

Figure 1 Similar Size Partitioning

The following is a list of the entire encoding process. Every

ILS-RDF assertion is first processed and then broken up into

a variety of distinct elements including premise, condition,

and argument. Find the supplicate phrases in the generated

assertions, and then use the filter module to eliminate them

immediately. Furthermore, categorize each phrase

according to its hash value using the RS hash technique

described in. Algorithm 1 provides the technique. In this

case, the entire amount of groups and member nodes

should match. For sorting the nodes and grouping them,

this algorithm uses the hash value modulus [32]. Take the

instance in Figure 1 where the categories are partitioned

based on comparable dimensions to better comprehend

works for the initial category assigned to the second node.

The steps are shown in Figure 2.

The firm's distinct words are then moved to the central

node in a subsequent stage, maintaining the individual

term's integer number. The sequential approach is used

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1805

throughout the complete system of encoding the phrases.

The regional thesaurus will be checked for a unique ID for

every phrase. The ID is obtained immediately if the word

has already been entered into the thesaurus. If the word is

brand-new to the thesaurus, the phrase will receive the

proper new ID. The words' IDs are kept up to date at several

nodes. Once each word has been given an ID, the central

node keeps track of all of those IDs. Attributing IDs to the

elements in the member node1, for illustration, as depicted

in Figure 3.

Algorithm 1 Replication Server Hash Function in ILS-RDF

1: a ← 63689

2: b ← 378551

3: hash ← 0

4: i ← 0

5: while i =/ length do

6. hash ← hash ∗ a + ord(str[i]) a ← a ∗ b

7. i + +

8: end

Figure 2 Encoding Procedure

Parsing

Filtering

Dividing groups

+

Mark WorksFor CSE

Mark Advisor Stev

<Mark, WorksFor, CSE,

Mark, Advisor, Stev>

<Mark, WorksFor,

Advisor, CSE, Stev>

Mark, WorksFor Advisor, Stev, CSE

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1806

Figure 3 Partitioned into Member

All of the assertions delivered to the member nodes will be

given separate IDs and returned. Figure 4 shows their form.

Figure 4 Encoding

The filter procedure is used throughout the complete

system to locate the distinctive elements in the assertions

and deliver them to the central node. This method is used

for all words and will handle ILS-RDF queries with the

utmost efficiency. The cost of local node calculation and

communication will be significantly reduced as a result.

Delivering the words and returning their IDs allows for two-

way interaction under the proposed method, though. This

processing method is simple to operate and highly effective

for managing semantic web information.

Preparation for regularization was performed

independently by other means to simplify the load and

query processing:

Sx
∗ =

Sx

∑ Sx
n
x=1

 (2)

Zx
∗ =

Zx

∑ Zx
n
x=1

 (3)

Dx
∗ =

Dx

∑ Dx
n
x=1

 (4)

Researchers break things up into three groups according to

their length. When work has been assigned to Dx
∗ , it is

assigned to this group; however, it is assigned to another

group until all activities are divided into three groups.

Researchers could use activity categorization to focus on

resource planning. These SA swallows were installed inside

that cloud simulator as follows:

SAx = (sax
1, sax

2, … … , sax
n, … … … , sax

d) (5)

∀x = 1to 25 and n = 1 to 10

This quality procedure makes it possible to verify the

Mark WorksFor CSE

Mark Advisor Stev

Member 1
Mark UgratuatedFrom Oxford

Stev graduatedFrom Oxford

Member 2

Mark WorksFor CSE

Mark Advisor Stev

Encoded <102, 103, 104>

<102, 104, 105>

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1807

efficiency of this same sparrow region. The second sparrow

is filled with OSS, and these subsequent sparrows were

chosen based on the best efficacy score. It was dependent

on its cloud-free bandwidth but also on Big data processing

and transmission speed cost.

4.1 Single-level Indexing

The proposed technique creates the single-level indexing L1

for every sentence in the node when the ILS-RDF statement

translation is complete. This will aid in employing index

words to store the information. The proposed method,

which adopted vertical splitting for information splitting in

the nodes, is highly quick in responding to the query [33].

The proposed method created the tables for different

access patterns. The regional data set Xi is stored as triples

for each member node Si, enabling the search feature

described beneath. S, P, and O stand for the premise,

adjective, and argument in this sentence:

If it is p,

Return s.o where (s, p, o belongs to Xi). // P-index

If it is s and p,

Return o where (s, p, o belongs to Xi). // PS-index

If it is o and p,

Return s where (s, p, o belongs to Xi). // PO-index

It can be seen from the aforementioned search features

that every search function uses a criterion that is specified

and explained in the above steps. The assertions must be

expressed as real numbers and converted the numbers into

phrases to facilitate comprehension.

4.2 Query Processing

The single-level indexing L1 with a series of search queries

and several join procedures is used to execute SPARQL

queries. The single-level indexing makes it simple to see the

outcomes of the expressions in the nodes. Assume the Q1

in Figure 5, which is analyzed using vertical tables and the

predicates advisor and graduated From. It is segregated

using the comparable dimension partitioning method

shown in Figure 6. The parameters' ties to one another?

<?student, ?professor > and <?professor, ?university >The

stacked tables at the node make it simple to identify the

node.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1808

Figure 5 Single-Level Indexing

Figure 6 Partitions at Nodes

The join function will be used to consolidate the outcomes

once this procedure has been carried out concurrently for

all of the nodes. Therefore, a concurrent hash join process

is used to accomplish the join operation, which involves

doing a local join first, then spreading the intermediate data

to all of the nodes before sending the outcome to the

central nodes. The binding parameter professor is used to

execute a local join operation among node1 and node2 in

the instance earlier, and Figure 7 illustrates the entire join

procedure.

<?student, ?professor>

<?professor, ?university>

Member 1

<Mark, Stev>

Member 2

< Stev, Oxford>

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1809

Figure 7 Hash Join with Single Level Index

The retrieval procedure is efficient with the response time

at every node. This is because the proposed technique only

looks for matching index tables in the L1, not elsewhere. For

example, finding the vertical table graduated From by the

triples and returning the outcome in the necessary time.

However, the dissemination procedure must be carried out

by delivering the preliminary findings to each triple to

conduct the joint operation. This increases the

communication cost and bandwidth while requiring inter-

process interaction between the nodes. As a consequence,

the proposed solution employs runtime referencing (L2,

L3,...Ln) depending on the interim outcomes acquired by

the query.

The procedure of a query execution plan is comparable to

the technique of runtime indexing. In SPARQL, the approach

of parsing and extending is used to assess the query. The

query implementation strategy of ILS-RDF using SPARQL

was employed in the proposed manner and the runtime

operation is shown in Figure 8 alongside Algorithm 2 for

query processing and runtime indexing.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1810

Figure 8 Hash Join with Runtime Index

Conversion and analysis of the SPARQL query into tuple

calculus comes next. Additionally, the tuple calculus is used

to build the join tree. To demonstrate joins, let's use a query

with three or four parameters. The instance used is the

search covered in Task 3. There are three independent

variables in the foregoing: professor, student, and

university. The search seeks to locate the professor,

student, and university where the professor teaches for the

CSE department and acts as the student's mentor. It also

seeks to locate the student's undergraduate institution. The

ILS-RDF with the SPARQL prefix and parameters have been

omitted from the response for readability.

The following is the tuple calculus notation. The letters p, s,

and u stand for the parameters professor, student, and

university, correspondingly. The join tree for the

aforementioned three triples will be using the tuple

calculus. The flowchart described in Figure 9 with the triples

P1, P2, and P3 acting as nodes and the connections as

edges. The request contains three triples. The above query's

inquiry implementation strategy comprises:

At every node, implement filter criteria accordingly.

Therefore, P1's CSE has finished its function.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1811

Figure 9 Query Graph

4. Experimental Evaluation

The Big data to assess how well the proposed technique

performed. When compared to other techniques already in

use, such as RDF-3X, the effectiveness of the new method is

evaluated. Performance indicators for the proposed

technique include loading time and query response time.

The starting arrangement for the 2 kinds of instances is

32GB RAM, 8 cores, and 4 EC2 computational units, as well

as 64GB RAM, 16 cores, and 8 EC2 computational modules.

Every EC2 computational unit has the same processing

power as a 20.0 GHz 2016 Xeon CPU. This collection includes

the ILS-RDF-based ontology for the university domain. In

addition, 14 queries with various attributes are included in

this dataset. Implement monitoring tools to track query

performance, system resource utilization, and bottlenecks.

This enables proactive identification and resolution of

performance issues. Table 1 provides the dataset

dimensions that we took into account when evaluating the

query.

Table 1 Dataset properties

Organizations Triples Size

400 55035263 9.4(GB)

800 110695322 21.8 (GB)

In Tables 2 and 3, the loading times of the information for

ILS-RDF and SHARD are listed. For a dataset of 400

organizations, the proposed method takes approximately

454 seconds, and for a dataset of 800 organizations, it takes

about 965 seconds. When contrasted with the other

approaches, the proposed model's efficiency is observed to

be higher. This is a result of the simultaneous loading

procedure and the low indexes. Additionally, designing a

P2 P1

P3

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1812

scaling strategy that allows the system to handle increasing

data loads and query demands. This could involve vertical

scaling (adding more resources to existing nodes) or

horizontal scaling (adding more nodes to the cluster).

Algorithm 2 Query Processing and Runtime Indexing

Input: Q, L, R// Q: Executed Query, L: Index runtime

Output: R: Results

Run time Indexing

Step 1: L1 can be created// Single Level Indexing

Step 2: for i -> 1 to n

{ Step 3: If Ri of Q originates in L1 then

{ Step 3.1: Ri sends to all nodes}

else

{Step 3.2: Calculate Q}

Step 4: If Ri == indexable

{Step 4.1: L.index(Ri)}

}Step 5: Join (R)

Query Processing

Step 1: For Every Q do

 {Step 2: Run the Query plan

 Step 3: Compute (R) }

Table 2: Loading time of 400 organizations dataset

Method Size of Memory Time is taken for

loading

Throughput

(Triples/sec)

RDF-3X 20.8 12486 488.5K

SHARD 23.7 1026 3789.1k

Proposed 9.4 656 4125.7k

Table 3 Loading time of 800 organizations dataset

Method Size of Memory Time is taken for

loading

Throughput

(Triples/sec)

RDF-3X 37.4 34654 556.3k

SHARD 48.5 3024 975.0k

Proposed 30.7 1065 4962.5k

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1813

Utilizing runtime referencing L2 and single component

indexing L1, the 14 LUBM requests are processed. Minimal

join procedures were used in the queries, and RDF-3X and

SHARD performance in both L1 and L2 were taken into

consideration. Figures 10 and 11 display the response times

for 14 queries that were performed to the LUBM 400

university dataset and ranged from Q1 to Q14. In the

proposed approach, L2 responds more quickly than L1 does.

When likened to RDF-3X and SHARD, the proposed

technique performed worse on various queries, including

Q1, Q3, Q4, and Q7. Implement robust access control

mechanisms to ensure that only authorized users and

applications can access sensitive RDF data. If dealing with

sensitive business data, consider implementing data

anonymization techniques to protect individual privacy

while still providing valuable insights. Simple queries are

executed slowly using the mechanism. This is because the

RDF-3X runs the query in a matter of seconds. With this

method, lookups and connections happen quite efficiently.

While the proposed methodology and SHARD employ the

decentralized approach, the RDF-3X adheres to the

centralized system.

Figure 10: The response time from Q1 to Q7 in single level

referencing L1 and L2 for 400 organizations

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Queries

RDF-3X (L1)

RDF-3X (L2)

SHARD (L1)

SHAR (L2)

Proposed (L1)

Proposed(L2)

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1814

Figure 11: The response time from Q8 to Q14 in single level

referencing L1 and L2 for 400 organizations

Figure 12 and Figure 13 display the reply time of the

interrogations using the educational dataset LUBM 800.

These data sets contain additional triples, which add

additional overhead to the procedures. For Q2 and Q9, the

proposed solution produced a slower response time. The

proposed approach is made for sophisticated systems, but

the parallel and distributed technique is not supported in

different ways. Continuously monitor and analyze system

performance to identify areas for improvement. Adjust

caching strategies, indexing techniques, and query

optimization rules as needed. Gather feedback from

business users and application developers to refine the

system's features and capabilities based on real-world

usage scenarios.

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6

Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Queries

RDF-3X (L1)

RDF-3X (L2)

SHARD (L1)

SHAR (L2)

Proposed (L1)

Proposed(L2)

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1815

Figure 12: The response time from Q1 to Q7 in single level

referencing L1 and L2 for 800 organizations

Figure 13: The response time from Q8 to Q14 in single level

referencing L1 and L2 for 800 organizations

5. Conclusions

In this study, we created an effective ILS-RDF data

processing mechanism for accelerating information

extraction and query execution over massive amounts of

information. To encrypt the information in the ILS-RDF, the

proposed technique took advantage of the comparable

dimension division methodology. To speed up data loading,

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Queries

RDF-3X (L1)

RDF-3X (L2)

SHARD (L1)

SHAR (L2)

Proposed (L1)

Proposed(L2)

0

50

100

150

200

250

300

0 1 2 3 4 5 6

Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Queries

RDF-3X (L1)

RDF-3X (L2)

SHARD (L1)

SHAR (L2)

Proposed (L1)

Proposed(L2)

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1816

single-level indexing and runtime time indexing are utilized.

The proposed model's effectiveness is evaluated using the

LUBM benchmark. The proposed technique delivered

acceptable results while analyzing queries and showed

excellent efficiency when it came to extracting information.

By developing an improved large-scale RDF system on big

data requires careful consideration of data storage, query

optimization, integration with business technology, and

ongoing performance tuning. By combining distributed

computing, efficient query processing, and seamless

integration with business tools, creating a powerful

platform that accelerates query processing and loading

speed while providing actionable insights for an

organization.

References

[1] Chandra, V. V., Sai, P. C., &Mandapati, S. (2022, May). An

Efficient Framework for Load Balancing using MapReduce

Algorithm for Bigdata. In 2022 International Conference on

Applied Artificial Intelligence and Computing (ICAAIC) (pp. 791-

794).IEEE.

[2] Yadav, N. S., Krishna, M., Sapthami, I., Rao, C. M.,

&Parameswari, D. L. Sustainable Efficient Solutions for Smart

Agriculture: Case study. In IoT and Big Data Analytics for Smart

Cities (pp. 175-199). Chapman and Hall/CRC.

[3] Makpaisit, P., &Chantrapornchai, C. (2021). VEDAS: an efficient

GPU alternative for store and query of large RDF data sets. Journal

of Big Data, 8(1), 1-34.

[4] Garikapati, P., Balamurugan, K., Latchoumi, T. P.,

&Malkapuram, R. (2021). A Cluster-Profile Comparative Study on

Machining AlSi 7/63% of SiC Hybrid Composite Using

Agglomerative Hierarchical Clustering and K-Means. Silicon, 13,

961-972.

[5]Yao, Z., Chen, R., Zang, B., & Chen, H. (2021). Wukong+ G: Fast

and Concurrent RDF Query Processing Using RDMA-Assisted GPU

Graph Exploration. IEEE Transactions on Parallel and Distributed

Systems, 33(7), 1619-1635.

[6] Cisneros-Cabrera, S., Michailidou, A. V., Sampaio, S., Sampaio,

P., &Gounaris, A. (2021). Experimenting with big data computing

for scaling data quality-aware query processing. Expert Systems

with Applications, 178, 114858.

[7] Sun, Y., Zhao, T., Yoon, S., & Lee, Y. (2021). A Hybrid Approach

Combining R*-Tree and k-d Trees to Improve Linked Open Data

Query Performance. Applied Sciences, 11(5), 2405.

[8] Latchoumi, T.P., Ezhilarasi, T.P. &Balamurugan, K. Bio-inspired

weighed quantum particle swarm optimization and smooth

support vector machine ensembles for identification of

abnormalities in medical data. SN Appl. Sci. 1, 1137 (2019).

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1817

https://doi.org/10.1007/s42452-019-1179-8

[9] Sun, Y., Chun, S. J., & Lee, Y. (2022). Learned semantic index

structure using knowledge graph embedding and density-based

spatial clustering techniques. Applied Sciences, 12(13), 6713.

[10] Wang, W., Zhang, Y., Ge, G., Jiang, Q., Wang, Y., & Hu, L.

(2021). A Hybrid Spatial Indexing Structure of Massive Point Cloud

Based on Octree and 3D R*-Tree. Applied Sciences, 11(20), 9581.

[11] Mountasser, I., Ouhbi, B., Hdioud, F., &Frikh, B. (2021).

Semantic-based Big Data integration framework using scalable

distributed ontology matching strategy. Distributed and Parallel

Databases, 39(4), 891-937.

[12]M. Anand, N. Balaji, N. Bharathiraja, A. Antonidoss, A

controlled framework for reliable multicast routing protocol in

mobile ad hoc network, Materials Today: Proceedings, 2021, ISSN

2214-7853

[13] Bilidas, D., Ioannidis, T., Mamoulis, N., &Koubarakis, M.

(2022). Strabo 2: Distributed Management of Massive Geospatial

RDF Datasets. In International Semantic Web Conference (pp.

411-427).Springer, Cham.

[14] Benítez-Hidalgo, A., Barba-González, C., García-Nieto, J.,

Gutiérrez-Moncayo, P., Paneque, M., Nebro, A. J., ...&Navas-

Delgado, I. (2021). TITAN: a knowledge-based platform for Big

Data workflow management. Knowledge-Based Systems, 232,

107489.

[15] Sneha, P., & Balamurugan, K. (2023). Investigation on Wear

Characteristics of a PLA-14% Bronze Composite

Filament.In Recent Trends in Product Design and Intelligent

Manufacturing Systems (pp. 453-461).Springer, Singapore.

[16] Yadav, N. S., Gogula, S., Sharma, G. K., Rao, C. M.,

&Parameswari, D. L. IoT and Big Data Analytics-Based Intelligent

Decision-Making Systems. In IoT and Big Data Analytics for Smart

Cities (pp. 101-119). Chapman and Hall/CRC.

[17] Parameswaran, T., Reddy, Y. P., Nagaveni, V., &Sathiyaraj, R.

Era of Computational Big Data Analytics and IoT Techniques in

Smart City Applications. IoT and Big Data Analytics for Smart

Cities, 1-22.

[18] Hirakata, T., &Amagasa, T. (2021, November). A Dynamic

Load-balancing Method for Distributed RDF Stream Processing

Systems.In The 23rd International Conference on Information

Integration and Web Intelligence (pp. 410-414).

[19] Devaki, K., &Leena Jenifer, L. (2022). A Study on Challenges in

Data Security During Data Transformation. In Computer

Networks, Big Data and IoT (pp. 49-66).Springer, Singapore.

[20] Arooj, A., Farooq, M. S., Akram, A., Iqbal, R., Sharma, A.,

&Dhiman, G. (2021). Big data processing and analysis in internet

of vehicles: architecture, taxonomy, and open research

challenges. Archives of Computational Methods in Engineering, 1-

37.

[21] Latchoumi, T. P., Swathi, R., Vidyasri, P., & Balamurugan, K.

Journal of Namibian Studies, 35 S1 (2023): 1799-1818 ISSN: 2197-5523 (online)

1818

(2022, March). Develop New Algorithm To Improve Safety On

WMSN In Health Disease Monitoring. In 2022 International

Mobile and Embedded Technology Conference (MECON) (pp.

357-362). IEEE.

[22] Xia, Q., Zhou, L., Ren, W., & Wang, Y. (2022). Proactive and

intelligent evaluation of big data queries in edge clouds with

materialized views. Computer Networks, 203, 108664.

[23] Wei, R. (2022). Load Balancing Optimization of In-Memory

Database for Massive Information Processing of Internet of Things

(IoTs). Mathematical Problems in Engineering, 2022.

[24] Vankdothu, R., Hameed, M. A., Bhukya, R., &Garg, G. (2022).

Entropy and sigmoid based K-means clustering and AGWO for

effective big data handling. Multimedia Tools and Applications, 1-

18.

[25] Dubey, A. K., Gupta, R., & Mishra, S. (2021, March). Data

stream clustering for big data sets: A comparative analysis. In IOP

Conference Series: Materials Science and Engineering (Vol. 1099,

No. 1, p. 012030). IOP Publishing.

[26] Santipantakis, G. M., Kotis, K. I., Glenis, A., Vouros, G. A.,

Doulkeridis, C., &Vlachou, A. (2022). RDF-Gen: generating RDF

triples from big data sources. Knowledge and Information

Systems, 64(11), 2985-3015.

[27] Ren, Y., Huang, D., Wang, W., & Yu, X. (2023). BSMD: A

blockchain-based secure storage mechanism for big spatio-

temporal data. Future Generation Computer Systems, 138, 328-

338.

[28]Karimi, Y., HaghiKashani, M., Akbari, M., &Mahdipour, E.

(2021). Leveraging big data in smart cities: A systematic

review. Concurrency and Computation: Practice and

Experience, 33(21), e6379.

[29] Bilal, B. M., Ilham, C., &Azeddine, Z. (2021). An empirical

study on the evaluation of the RDF storage systems. Journal of Big

Data, 8(1).

[30]Umamageswari, N. Bharathiraja, D. Shiny Irene,A Novel Fuzzy

C-Means based Chameleon Swarm Algorithm for Segmentation

and Progressive Neural Architecture Search for Plant Disease

Classification,ICT Express,2021,ISSN 2405-9595

[31]Amer, A. A., Abulwafa, S. S., & El-Hadi, M. M. (2021, March).

A Proposed Framework for Building Semantic Search Engine with

Map-Reduce.In International Conference on Advanced Machine

Learning Technologies and Applications (pp. 469-477).Springer,

Cham.

[32] Ali, W., Saleem, M., Yao, B., Hogan, A., &Ngomo, A. C. N.

(2021). A survey of RDF stores & SPARQL engines for querying

knowledge graphs. The VLDB Journal, 1-26.

[33]Yadav, S., Yeruva, S., Kumar, T. S., & Susan, T. (2021, October).

The Improved Effectual Data Processing in Big Data Executing Map

Reduce Frame Work. In 2021 IEEE Mysore Sub Section

International Conference (MysuruCon) (pp. 587-595). IEEE.

