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ABSTRACT 

In this paper, the notion of Iαg
⋀-connectedness in 

intuitionistic topological spaces. Also Iαg
⋀-compactness is 

defined in intuitionistic topological spaces and several 

preservation properties are obtained. 

 

1 Introduction 

The concept of intuitionistic sets in topological spaces was first 

introduced by Coker[1] in 1996. He also introduced the concept 

of intuitionistic points and investigated some fundamental 

properties of closed sets in intuitionistic topological spaces. 

Also in 2000 [3], developed the concept of intuitionistic 

topological spaces with intuitionistic sets and compactness. 

J.Arul Jesti and K.Heartlin [6] introduced the concept of 

alpha^generalized closed sets in intuitionistic topological 

spaces. In this paper some properties of  Iαg
⋀- connectedness 

in intuitionistic topological spaces and Iαg
⋀-compactness  in 

intuitionistic topological spaces. 

 

2. Preliminaries 

 

Definition 2.1 [1]: Let ℋ be a non-empty set. An  intuitionistic  

set (IS for short) 𝒜 is an object having the form 𝒜 

=< ℋ, 𝒜1, 𝒜2> Where 𝒜1 and 𝒜2 are subsets of ℋ satisfying 

𝒜1 ∩ 𝒜2 = ϕ. The set 𝒜1 is called the set of members of 𝒜, 

while 𝒜2 is called set of  non members of 𝒜. 
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Definition 2.2 [1]: Let ℋ be a non-empty set and 𝒜 and 𝔅 are 

intuitionistic set in the form 𝒜 =< ℋ, 𝒜1, 𝒜2 > , 𝔅 =<

ℋ, 𝔅1, 𝔅2 > respectively. Then 

a) 𝒜 ⊆ 𝔅 iff 𝒜1 ⊆ 𝔅1and 𝒜2 ⊇ 𝔅2 

b) 𝒜 = 𝔅 iff 𝒜 ⊆ 𝔅 and 𝔅 ⊆ 𝒜  

c) 𝒜C = < ℋ, 𝒜2, 𝒜1 > 

d) 𝒜 − 𝔅 = 𝒜 ∩ 𝔅C 

e) ϕ = < ℋ, ϕ, ℋ >, ℋ =< ℋ, ℋ, ϕ > 

f) 𝒜 ∪ 𝔅 = < ℋ, 𝒜1 ∪ 𝔅1, 𝒜2 ∩ 𝔅2 > 

g) 𝒜 ∩ 𝔅 = < ℋ, 𝒜1 ∩ 𝔅1, 𝒜2 ∪ 𝔅2 >. 

 

Definition 2.3 [5]: Let (ℋ,Iτ) be an intuitionistic topological 

space. Then ℋ is called I-disconnected if there exists an I-open 

sets R ≠ ϕ̃  and S ≠ ϕ̃ such that R ∪ S ≠ ϕ̃ and R ∩ S ≠ ϕ̃. ℋ 

is called I-connected, if ℋ is not disconnected.  

Definition 2.4 [5]: Let N be an intuitionistic set in the ITS (ℋ,Iτ). 

If there exists I-open sets R and S in ℋ satisfying the following 

properties, then N is called ICi-disconnected (i = 1,2,3,4).  

IC1: N ⊆  R ∪  S, R ∩  S ⊆  Nc  , N ∩  R ≠  ϕ̃ , N ∩  S ≠  ϕ̃, 

IC2: N ⊆  R ∪  S, R ∩  S ∩  N =  ϕ̃, N ∩  R ≠  ϕ̃, N ∩  S

≠  ϕ̃. 

IC3: N ⊆  R ∪  S, R ∩  S ⊆  Nc , R ⊈ Nc, S ⊈ Nc, 

IC4: N ⊆  R ∪  S, R ∩  S ∩  N =  ϕ̃, R ⊈ Nc, S ⊈ Nc. 

N is said to be 𝐈𝐂𝐢-connected (i = 1,2,3,4) if N is not ICi-

disconnected (i = 1,2,3,4).  

 

Definition 2.5[7]: An ITS ℋ is called Iαg
⋀-disconnected if there 

exists an Iαg
⋀-open sets R ≠ ϕ and S ≠ ϕ̃  such that R ∪   S =

 ℋ̃  and R ∩   S =  ϕ̃. ℋ is called Iαg
⋀-connected, if ℋ is not 

Iαg
⋀-disconnected.  

 

Definition 2.6 [7]: Let N be an intuitionistic set in the ITS (ℋ,Iτ). 

If there exists Iαg
⋀-open sets R and S in ℋ satisfying the 

following properties, then N is called Iαg
⋀Ci-disconnected (i = 

1,2,3,4).  

Iαg
⋀C1: N ⊆  R ∪  S, R ∩  S ⊆  Nc  , N ∩  R ≠  ϕ̃ , N ∩  S ≠

 ϕ̃, 

Iαg
⋀C2: N ⊆  R ∪  S, R ∩  S ∩  N =  ϕ̃, N ∩  R ≠  ϕ̃, N ∩  S

≠  ϕ̃. 

Iαg
⋀C3: N ⊆  R ∪  S, R ∩  S ⊆  Nc , R ⊈ Nc, S ⊈ Nc, 

Iαg
⋀C4: N ⊆  R ∪  S, R ∩  S ∩  N =  ϕ̃, R ⊈ Nc, S ⊈ Nc. 

N is said to be Iαg
⋀𝐂𝐢-connected (i = 1,2,3,4) if N is not Iαg

⋀Ci-

disconnected (i = 1,2,3,4).  
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Definition 2.7 [3]: Let (ℋ, Iτ) be an intuitionistic topological 

space. If a family {< ℋ, P1k
, P2k

> ; k ∈ J} of I-open sets in ℋ 

satisfies the condition ∪  {< ℋ, P1k
, P2k

> ; k ∈ J}   = ℋ̃ , then 

it is called an 𝐈-open cover of ℋ. A finite subfamily of an Iαg
⋀-

open cover {< ℋ, P1k
, P2k

> ; k ∈ J}  of ℋ, which is also an I-

open cover of ℋ is called a finite I-subcover of {< ℋ, P1k
, P2k

>

 ; k ∈ J} 

 

Definition 2.8 [3]: Let (ℋ, Iτ) be an intuitionistic topological 

space. A family {< ℋ, P1k
, P2k

> ; k ∈ J}   of I-closed sets in ℋ 

satisfies the finite intersection property iff every finite 

subfamily {P1, P2, P3,...., Pn} of P satisfies the condition ⋂ <n
k=1

ℋ, P1k
, P2k

>  ≠  ϕ̃ . 

 

Definition 2.9 [3]: An ITS  (ℋ, Iτ) is said to be I-compact iff 

each I-open cover has a finite I-subcover  

 

Definition 2.10 [3]:  Let (ℋ, Iτ) be an intuitionistic topological 

space and G be an IS in ℋ. The family {< ℋ, P1k
, P2k

> ; k ∈ J} 

of I-open sets in ℋ is called an I-open cover of G if G ⊆ ∪  {<

ℋ, P1k
, P2k

> ; k ∈ J} .  

 

Definition 2.11 [3]: An IS G = < ℋ, G1, G2 > in an ITS (ℋ, Iτ) 

is called I-compact iff every I-open cover of G has a finite I-

subcover. Also we can define an IS G = < ℋ, G1, G2 >  in 

(ℋ, Iτ) is I-compact iff for each family P =  {Pk ∶  k ∈  J} 

where Pk =  {< ℋ, P1k
, P2k

> ; k ∈ J} of I-open sets in ℋ, G1⊆ 

⋃ P1kk ∈J  and G2 ⊇ ⋃ P2kk ∈J , there exists a finite subfamily 

{P1, P2, P3,...., Pn} of P such that G1 ⊆ ⋃ P1k

n
k=1 and G2 ⊇ 

⋃ P2k

n
k=1    

 

Proposition 2.12 [3]: Let (ℋ, Iτ) be an intuitionistic topological 

space on ℋ. Then, we can also construct several ITS’s on ℋ in 

the following way: 

 

(a) Iτ0,1={[ ] G : G ∈ Iτ}, (b) Iτ0,2={< > G : G ∈ Iτ}. 

Remark 2.13 [3]: Let (ℋ, Iτ) be an intuitionistic 

topological space.  

(a) Iτ1 = {𝒜1: < ℋ, 𝒜1, 𝒜2 >∈ Iτ} is a topological space on 

ℋ.  Similarly, k2={𝒜2: < ℋ, 𝒜1, 𝒜2 >∈ Iτ} is the family of 

all closed sets of the topological space Iτ2 = {(𝒜2)c : <

ℋ, 𝒜1, 𝒜2 >∈ Iτ} on ℋ.   

(b) Since 𝒜1 ∩ 𝒜2= ϕ for each 𝒜 = < ℋ, 𝒜1, 𝒜2 >∈ Iτ, we 
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obtain 𝒜1⊆ (𝒜2) C and 𝒜2⊆ (𝒜1) C. Hence, we may 

conclude that (ℋ, Iτ1, Iτ2) is a bitopological space.  

 

3. 𝐈𝛂𝐠
⋀-connectedness in Intuitionistic Topological Spaces  

Theorem 3.1.: If Gx and Gy are intersecting  Iαg
⋀C1-connected 

sets, then Gx ∪ Gy is also  Iαg
⋀C1-connected.  

Proof: Let Gx ∪ Gy be  Iαg
⋀C1-disconnected. Then there exists  

Iαg
⋀-open sets R and S such that Gx ∪ Gy ⊆ R ∪  S, R ∩  S ⊆ 

(Gx  ∪  Gy)cand (G1  ∪  Gy) ∩  R ≠  ϕ̃, (Gx  ∪  Gy) ∩  S ≠  ϕ̃. 

Suppose Gx and Gy are  Iαg
⋀C1-connected then (Gx ∩  R =  ϕ̃ 

or Gx  ∩  S =  ϕ̃ ) and (Gy ∩  R =  ϕ̃ or Gy  ∩  S =  ϕ̃). Since Gx 

∩ Gy ≠  ϕ̃ , there exists p̃̃  ∈ Gx ∩ Gy of the following cases. 

Case (i): Let Gx ∩  R =  ϕ̃  and Gy ∩  S =  ϕ̃. Then (Gx ∩  R ) ∪ 

(Gy ∩  R) = (Gx ∪ Gy) ∩  R =  ϕ̃ which is a contradiction. Case 

(ii): Let Gx ∩  R =  ϕ̃ and Gy ∩  S =  ϕ̃ . Then there exists p̃̃  ∉

 R, p̃̃  ∉  S which is impossible since p̃̃  ∈ Gx  ∪ Gy ⊆ ℋ ∪ 𝒴. 

Case (iii): Let Gx ∩  S =  ϕ̃  and Gy ∩  R =  ϕ̃ . Then there exists 

p̃̃  ∉  R, p̃̃  ∉  S which is impossible as above. Case (iv): Let Gx 

∩  S =  ϕ̃  and Gy ∩  S =  ϕ̃. Then (Gx  ∩  S)  ∪ (Gy  ∩  S) =

 (Gx  ∪  Gy)  ∩  S =  ϕ̃ which is a contradiction. Hence Gx and 

Gy are  Iαg
⋀C1-disconnected.  

 

Theorem 3.2: If Gx and Gy are intersecting  Iαg
⋀C2-connected 

sets, then Gx ∪ Gy is also  Iαg
⋀C2-connected .  

 

Proof: Similar  to Theorem 3.1.  

 

Theorem 3.3: Let (𝐺𝑘): 𝑘 ∈ 𝐽 be a family of  𝐼𝛼𝑔
⋀𝐶1-connected 

sets such that ∩ 𝐺𝑘 ≠ 𝜙̃. Then ∪ 𝐺𝑘  is also  𝐼𝛼𝑔
⋀𝐶1-connected.  

Proof: Let 𝐺 = ∪ 𝐺𝑘  be  𝐼𝛼𝑔
⋀𝐶1-disconnected. Then there 

exists  𝐼𝛼𝑔
⋀-open sets 𝑅 and 𝑆 such that 𝐺 ⊆  𝑅 ∪ 𝑆, 𝑅 ∩ 𝑆 ⊆

𝐺𝑐 , 𝐺 ∩  𝑅 ≠  𝜙̃, 𝐺 ∩  𝑆 ≠  𝜙̃. Consider any index 𝑘0  ∈  𝐽. 

Since 𝐺𝑘0
 is  𝐼𝛼𝑔

⋀𝐶1-connected, we have 𝐺𝑘0
 ∩  𝑅 =  𝜙̃,  or 

𝐺𝑘0
 ∩  𝑆 =  𝜙̃, So we have three cases. Case (i): If 𝐺𝑘 ∩  𝑅 =

 𝜙̃ for each 𝑘 ∈  𝐽1 and 𝐺𝑘 ∩  𝑅 = (∪ 𝐺𝑘) ∩  𝑅 = ∪ (𝐺𝑘 ∩  𝑅) 

= 𝜙̃ which is a contradiction. Case (ii): If 𝐺𝑘 ∩  𝑆 =  𝜙̃ for each 

𝑘 ∈  𝐽1 and 𝐺𝑘 ∩  𝑆 =  (∪ 𝐺𝑘) ∩  𝑆 = ∪ (𝐺𝑘 ∩  𝑆) = 𝜙̃ which 

is a contradiction. Case (iii): If 𝐺𝑘 ∩  𝑅 =  𝜙̃ for each 𝑘 ∈  𝐽1 

and 𝐺𝑘 ∩  𝑆 =  𝜙̃  for each 𝑘 ∈  𝐽2 where 𝐽 =  𝐽1 ∪ 𝐽2 and 𝐽1 

≠ 𝜙̃ , 𝐽2 ≠ 𝜙̃. Since ∩ 𝐺𝑘  ≠ 𝜙̃ , 𝑝̃̃ ∈ ∩ 𝐺𝑘. In this case 𝑝̃̃  ∉  𝑅 

and 𝑝̃̃  ∉  𝑆 which is a contradiction 𝑝̃̃  ∈  𝐺 ⊆  𝑅 ∪ 𝑆 . Hence 𝐺 

is also  𝐼𝛼𝑔
⋀𝐶1-disconnected.  
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Theorem 3.4: Let (𝐺𝑘): 𝑘 ∈ 𝐽 be a family of  𝐼𝛼𝑔
⋀𝐶2-connected 

sets such that ∩ 𝐺𝑘 ≠ 𝜙̃. Then ∪ 𝐺𝑘 is also  𝐼𝛼𝑔
⋀𝐶2-connected.  

 

Proof :  Similar to Theorem 3.3.  

 

Theorem 3.5: Let (ℋ, 𝐼𝜏) be an intuitionistic topological space. 

Then  

(1) 𝑎̃ is  𝐼𝛼𝑔
⋀𝐶1-connected  

(2) 𝑎̃ is  𝐼𝛼𝑔
⋀𝐶2-connected.  

 

Proof. (1) Suppose 𝑎̃ be  𝐼𝛼𝑔
⋀𝐶1-disconnected. Then there exist  

𝐼𝛼𝑔
⋀open sets 𝑅 and 𝑆 such that 𝑎̃ ⊆ 𝑅 ∪ 𝑆, 𝑅 ∩  𝑆 ⊆ 𝑎̃𝑐, 𝑎̃ ∩

 𝑅 ≠ 𝜙̃ , 𝑎̃ ∩  𝑆 ≠ 𝜙̃  where 𝑎̃𝑐 = < ℋ, {𝑎}𝑐 , {𝑎}  >. Since 𝑎̃ ∩

 𝑅 ≠ 𝜙̃ and 𝑎̃ ∩  𝑆 ≠ 𝜙̃  , we get 𝑎̃̃  ∈  𝑅 and 𝑎̃̃  ∈  𝑆. But 𝑅 ∩

 𝑆 ⊆ 𝑎̃𝑐 implies 𝑅1  ∩  𝑆1  ⊆ 𝑎̃𝑐 and 𝑅2  ∪  𝑆2  ⊇ 𝑎̃𝑐 which is 

impossible. Hence 𝑎̃ is  𝐼𝛼𝑔
⋀𝐶1-connected. (ii) Let 𝑎̃ be  𝐼𝛼𝑔

⋀𝐶2-

disconnected. Then there exist  𝐼𝛼𝑔
⋀-open sets 𝑅 and 𝑆 such 

that 𝑎̃ ⊆ 𝑅 ∪ 𝑆, 𝑅 ∩  𝑆 ∩  𝑎̃ =  𝜙̃ , 𝑎̃ ∩  𝑅 ≠ 𝜙̃ , 𝑎̃ ∩  𝑆 ≠ 𝜙̃ . 

Since 𝑎̃ ∩  𝑅 ≠ 𝜙̃ and 𝑎̃ ∩  𝑆 ≠ 𝜙̃  , we get 𝑎̃̃  ∈  𝑅 and 𝑎̃̃  ∈  𝑆 

which implies 𝑎 ∉  𝑅2 and 𝑎 ∉  𝑆2. But 𝑅 ∩  𝑆 ∩ 𝑎̃  =  𝜙̃ which 

implies 𝑅2  ∪  𝑆2  ∪ {𝑎}𝑐 = ℋ̃  which is impossible.  Hence 𝑎̃ is  

𝐼𝛼𝑔
⋀𝐶2-connected. 

 

4. 𝑰𝜶𝒈
⋀-Compactness In Intuitionistic Topological Spaces 

In this section we discuss the concepts of an 𝐼𝛼𝑔
⋀-Compactness 

in intuitionistic topological spaces and also some results are 

discussed. 

 

Definition 4.1: Let (ℋ, 𝐼𝜏) be an intuitionistic topological 

space. If a family {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽} of 𝐼𝛼𝑔
⋀-open sets in 

ℋ satisfies the condition ∪  {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽}   = ℋ̃ , 

then it is called an 𝐼𝛼𝑔
⋀-open cover of ℋ. A finite subfamily of 

an 𝐼𝛼𝑔
⋀-open cover {< ℋ, 𝑃1𝑘

, 𝑃2𝑘
> ; 𝑘 ∈ 𝐽}  of ℋ, which is 

also an 𝐼𝛼𝑔
⋀-open cover of ℋ is called a finite 𝐼𝛼𝑔

⋀-subcover of 

{< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽} 

 

Definition 4.2: Let (ℋ, 𝐼𝜏) be an intuitionistic topological 

space. A family {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽}   of 𝐼𝛼𝑔
⋀-closed sets 

in ℋ satisfies the finite intersection property iff every finite 

subfamily {𝑃1, 𝑃2, 𝑃3,...., 𝑃𝑛} of 𝑃 satisfies the condition 

⋂ < ℋ, 𝑃1𝑘
, 𝑃2𝑘

>𝑛
𝑘=1  ≠  𝜙̃ . 
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Definition 4.3: An ITS  (ℋ, 𝐼𝜏) is said to be 𝐼𝛼𝑔
⋀-compact iff 

each 𝐼𝛼𝑔
⋀-open cover has a finite 𝐼𝛼𝑔

⋀-subcover  

 

Definition 4.4: Let (ℋ, 𝐼𝜏) be an intuitionistic topological space 

and 𝐺 be an IS in ℋ. The family {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽} of 

𝐼𝛼𝑔
⋀-open sets in ℋ is called an 𝐼𝛼𝑔

⋀-open cover of 𝐺 if 𝐺 ⊆ ∪

 {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽} .  

 

Definition 4.5: An IS 𝐺 = < ℋ, 𝐺1, 𝐺2 > in an ITS (ℋ, 𝐼𝜏) is 

called 𝐼𝛼𝑔
⋀-compact iff every 𝐼𝛼𝑔

⋀-open cover of 𝐺 has a finite 

𝐼𝛼𝑔
⋀-subcover. Also we can define an IS 𝐺 = < ℋ, 𝐺1, 𝐺2 >  in 

(ℋ, 𝐼𝜏) is 𝐼𝛼𝑔
⋀-compact iff for each family 𝑃 =  {𝑃𝑘 ∶  𝑘 ∈  𝐽} 

where 𝑃𝑘 =  {< ℋ, 𝑃1𝑘
, 𝑃2𝑘

> ; 𝑘 ∈ 𝐽} of 𝐼𝛼𝑔
⋀-open sets in ℋ, 

𝐺1⊆ ⋃ 𝑃1𝑘𝑘 ∈𝐽  and 𝐺2 ⊇ ⋃ 𝑃2𝑘𝑘 ∈𝐽 , there exists a finite 

subfamily {𝑃1, 𝑃2, 𝑃3,...., 𝑃𝑛} of 𝑃 such that 𝐺1 ⊆ ⋃ 𝑃1𝑘

𝑛
𝑘=1 and 

𝐺2 ⊇ ⋃ 𝑃2𝑘

𝑛
𝑘=1 .  

 

Proposition 4.6: Let (ℋ, 𝐼𝜏) be an intuitionistic topological 

space. Then (ℋ, 𝐼𝜏)  is 𝐼𝛼𝑔
⋀-compact iff the ITS (ℋ, 𝐼𝜏0,1 ) is 

𝐼𝛼𝑔
⋀-compact.  

 

Proof: Necessity: Let (ℋ, 𝐼𝜏) be 𝐼𝛼𝑔
⋀-compact and consider an 

𝐼𝛼𝑔
⋀-open cover {[ ]𝑃𝑘 ∶  𝑘 ∈  𝐽} of ℋ in (ℋ, 𝐼𝜏0,1 ). Since ∪

([ ]𝑃𝑘  )  = ℋ̃ , we obtain ∪ 𝑃1𝑘
= ℋ and hence 𝑃2𝑘

⊆ (𝑃1𝑘
)𝑐 

which implies ∩ 𝑃2𝑘
⊆ (∪ 𝑃1𝑘

)𝑐 =  𝜙 which implies ∩ 𝑃2𝑘
=

 𝜙 and hence ∪ 𝑃𝑘 = ℋ̃. Since (ℋ, 𝐼𝜏) is 𝐼𝛼𝑔
⋀-compact, there 

exists 𝑃1, 𝑃2, 𝑃3,...., 𝑃𝑛 such that ⋃ 𝑃𝑘
𝑛
𝑘=1 = ℋ̃ which implies 

⋃ 𝑃1𝑘
= ℋ 𝑛

𝑘=1  and ⋂ 𝑃2𝑘

𝑛
𝑘=1 = 𝜙. Hence (ℋ, 𝐼𝜏0,1 ) is 𝐼𝛼𝑔

⋀-

compact.  

 

Sufficiency: Suppose (ℋ, 𝐼𝜏0,1)  is 𝐼𝛼𝑔
⋀-compact. Consider an 

𝐼𝛼𝑔
⋀-open cover {𝑃𝑘 ∶  𝑘 ∈  𝐽} of ℋ in (ℋ, 𝐼𝜏). Since ∪ 𝑃𝑘 = ℋ̃, 

we obtain  ∪ 𝑃1𝑘
= ℋ and hence ∩ (𝑃1𝑘

)𝑐 =  𝜙 which implies  

∪ ([ ]𝑃𝑘  )  = ℋ̃. Since (ℋ, 𝐼𝜏0,1 ) is 𝐼𝛼𝑔
⋀-compact, there exists 

𝑃1, 𝑃2, 𝑃3,...., 𝑃𝑛 such that ⋃ ([ ] 𝑃𝑘)𝑛
𝑘=1  = ℋ̃  which implies 

⋃ 𝑃1𝑘
=  ℋ 𝑛

𝑘=1  and ⋂ (𝑃1𝑘
)𝑐𝑛

𝑘=1 = 𝜙. Hence 𝑃1𝑘
⊆  (𝑃2𝑘

)𝑐 

which implies ℋ = ⋃ 𝑃1𝑘

𝑛
𝑘=1  ⊆ (⋂ 𝑃2𝑘

)𝑛
𝑘=1

𝑐
 which implies 

⋂ 𝑃2𝑘

𝑛
𝑘=1 = 𝜙.  Thus ⋃ 𝑃𝑘

𝑛
𝑘=1 = ℋ̃. So (ℋ, 𝐼𝜏) is 𝐼𝛼𝑔

⋀-compact.  

 

Proposition 4.7: The ITS (ℋ, 𝐼𝜏) is 𝐼𝛼𝑔
⋀-compact iff (ℋ, 𝐼𝜏𝜇) is 

𝐼𝛼𝑔
⋀-compact.  
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Proof: Similar to Proposition 4.6.  

 

Proposition 5.5.8: Let 𝑓: (ℋ, 𝐼𝜏𝜇)  ⟶  (𝒴, 𝐼𝜏𝜃)  be a surjective 

𝐼𝛼𝑔
⋀-continuous mapping. If (ℋ, 𝐼𝜏𝜇) is 𝐼𝛼𝑔

⋀-compact then 

(𝒴, 𝐼𝜏𝜃) is intuitionistic compact.  

 

Proof: Let {𝑃𝑘 ∶  𝑘 ∈  𝐽} be any intuitionistic open cover of 𝒴. 

Since 𝑓 is 𝐼𝛼𝑔
⋀-continuous, {𝑓−1(𝑃𝑘) ∶  𝑘 ∈  𝐽} is an 𝐼𝛼𝑔

⋀-open 

cover of ℋ. Since (ℋ, 𝐼𝜏𝜇) is 𝐼𝛼𝑔
⋀-compact, it has a finite 

subcover {𝑓−1(𝑃1), 𝑓−1(𝑃2), 𝑓−1(𝑃3),...., 𝑓−1(𝑃𝑛)} such that 

⋃ 𝑓−1(𝑃1𝑘
)  =  ℋ̃𝑛

𝑘=1  and ⋂ 𝑓−1(𝑃2𝑘
)𝑛

𝑘=1  =  𝜙̃ that is 

𝑓−1(⋃ (𝑃1𝑘
))  =  ℋ𝑛

𝑘=1  and 𝑓−1(⋂ (𝑃2𝑘
))𝑛

𝑘=1  =  𝜙 which 

implies ⋃ (𝑃1𝑘
)  =  𝑓(ℋ)𝑛

𝑘=1  and ⋂ (𝑃2𝑘
)𝑛

𝑘=1 =  𝑓(𝜙). Since 𝑓 

is surjective {𝑃1, 𝑃2, 𝑃3,...., 𝑃𝑛} is an open cover of 𝒴 and hence 

(𝒴, 𝐼𝜏𝜃)  is intuitionistic compact. 

 

Corollary 4.9: Let 𝑓: (ℋ, 𝐼𝜏𝜇)  ⟶  (𝒴, 𝐼𝜏𝜃) be  𝐼𝛼𝑔
⋀-

continuous. If 𝑁 is 𝐼𝛼𝑔
⋀-compact in (ℋ, 𝐼𝜏𝜇), then 𝑓(𝑁) is 

intuitionistic compact in (𝒴, 𝐼𝜏𝜃).  

 

Proof: Let {𝐺𝑘 ∶  𝑘 ∈  𝐽} be an intuitionistic open set of 𝒴 such 

that 𝑓(𝑁)  ⊆ ∪ {𝐺𝑘 ∶  𝑘 ∈  𝐽}. Then 𝑁 ⊂ ∪  {𝑓−1(𝐺𝑘) ∶  𝑘 ∈

 𝐽} where 𝑓−1(𝐺𝑘) is 𝐼𝛼𝑔
⋀-open in ℋ for each 𝑘. Since 𝑁 is 𝐼𝛼𝑔

⋀-

compact relative to ℋ, there exists a finite sub collection 

{𝐺1, 𝐺2, . . . . . , 𝐺𝑛} such that 𝑁 ⊂ ∪  {𝑓−1(𝐺𝑘) ∶  𝑘 =

 1, 2, . . . , 𝑛} . Hence 𝑓(𝑁) ⊂  𝑓(∪ {𝑓−1(𝐺𝑘) ∶  𝑘 =

 1, 2, . . . , 𝑛})  = ∪ {𝑓(𝑓−1(𝐺𝑘)) ∶  𝑘 =  1, 2, . . . , 𝑛})  ⊂ ∪ {𝐺𝑘  

: 𝑘 =  1, 2, . . . , 𝑛 }. Hence 𝑓(𝑁) is 𝐼𝛼𝑔
⋀-compact relative to 𝒴. 

 

Proposition 4.10: Let 𝑓: (ℋ, 𝐼𝜏𝜇)  ⟶  (𝒴, 𝐼𝜏𝜃) be an 𝐼𝛼𝑔
⋀-

irresolute mapping and if 𝑀 is 𝐼𝛼𝑔
⋀-compact relative to ℋ, then 

𝑓(𝑀) is 𝐼𝛼𝑔
⋀-compact relative to 𝒴.  

 

Proof. Let {𝑃𝑘 ∶  𝑘 ∈  𝐽} be an 𝐼𝛼𝑔
⋀-open set of 𝒴 such that 

𝑓(𝑀)  ⊆ ∪ {𝑃𝑘 ∶  𝑘 ∈  𝐽}. Then 𝑀 ⊂ ∪ {𝑓−1(𝑃𝑘) ∶  𝑘 ∈  𝐽} 

where 𝑓−1(𝑃𝑘) is 𝐼𝛼𝑔
⋀-open in ℋ for each 𝑘. Since 𝑀 is 𝐼𝛼𝑔

⋀-

compact relative to ℋ, there exists a finite sub collection 

{𝑃1, 𝑃2, . . . . . , 𝑃𝑛} such that 𝑀 ⊂ ∪ {𝑓−1(𝑃𝑘) ∶  𝑘 =

 1, 2, . . . , 𝑛} which implies 𝑓(𝑀)  ⊂ ∪ {𝑃𝑘: 𝑘 =  1, 2, . . . , 𝑛 }. 

Hence 𝑓(𝑀) is 𝐼𝛼𝑔
⋀-compact relative to 𝒴. 
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Proposition 4.11: Let 𝑓: (ℋ, 𝐼𝜏𝜇)  ⟶  (𝒴, 𝐼𝜏𝜃) be an 𝐼𝛼𝑔
⋀-

irresolute mapping. If ℋ is 𝐼𝛼𝑔
⋀-compact, then 𝒴 is also an 𝐼𝛼𝑔

⋀-

compact space .  

 

Proof. Let 𝑓: (ℋ, 𝐼𝜏𝜇)  ⟶  (𝒴, 𝐼𝜏𝜃) be an 𝐼𝛼𝑔
⋀-irresolute 

mapping from 𝐼𝛼𝑔
⋀-compact space (ℋ, 𝐼𝜏𝜇)  onto an 

intuitionistic topological space (𝒴, 𝐼𝜏𝜃). Let {𝐺𝑘 ∶  𝑘 ∈  𝐽} be 

an 𝐼𝛼𝑔
⋀-open cover of 𝒴. Then {𝑓−1(𝐺𝑘) ∶  𝑘 ∈  𝐽} is an 𝐼𝛼𝑔

⋀-

open cover of ℋ. Since ℋ is 𝐼𝛼𝑔
⋀-compact, there is a finite 

subfamily {𝑓−1(𝐺𝑘1
), 𝑓−1(Gk2

), f −1(Gk3
), . . . . . . , f −1(Gkn

)} of 

{f −1(Gk) ∶ k ∈  J} such that ⋃ f −1(Gkj
)n

j=1 = ℋ̃ . Since f is 

onto, f(ℋ̃)  =  𝒴̃ and f(⋃ f −1(Gkj
))n

j=1 = ⋃ f(f −1(Gkj
))n

j=1 =

⋃ Gkj

n
j=1 . It follows that ⋃ Gkj

n
j=1 = 𝒴̃  and the family 

{Gk1
, Gk2

, Gk3
, . . . . . . , Gkn

}  is an intuitionistic finite subcover of 

{Gk ∶  k ∈  J }. Hence (𝒴, Iτθ) is an Iαg
⋀- compact.  

 

Theorem 4.12: An ITS (ℋ, Iτ) is Iαg
⋀-compact iff every family 

{< ℋ, P1k
, P2k

> ; k ∈ J} of Iαg
⋀-closed sets in A having the FIP 

has a nonempty intersection.  

 

Proof: Assume that ℋ is Iαg
⋀-compact that is every Iαg

⋀-open 

cover of ℋ has a finite Iαg
⋀-subcover. Let Pk =  {<

ℋ, P1k
, P2k

> ; k ∈ J}  be a family of Iαg
⋀-closed sets of ℋ. Also 

assume that this family has finite intersection property. We 

have to show that ⋂ Pkk ∈ J ≠  ϕ̃. Suppose on the contrary , 

⋂ Pkk ∈ J =  ϕ̃ which implies ⋂ Pkk ∈ J
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  ϕ̅̃ which implies  

⋃ Pk
̅̅ ̅

k ∈ J  =  ℋ̃ that is ⋃  < ℋ, P2k
, P1k

> k ∈ J  =  ℋ̃. Since for 

every k ∈  J, Pk is an Iαg
⋀-closed  set of ℋ, therefore Pk

̅̅ ̅ will be 

an Iαg
⋀-open set of ℋ. Thus, { Pk

̅̅ ̅ = < ℋ, P2k
, P1k

> ∶ k ∈  J} is 

an Iαg
⋀-open cover for ℋ. Since ℋ is  Iαg

⋀-compact,  this Iαg
⋀-

cover has a finite Iαg
⋀-subcover, say, ⋃ Pk

̅̅ ̅ =  ⋃ <n
k = 1

n
k = 1

ℋ, P2k
, P1k

> = ℋ̃ .Then, ⋃ Pk
̅̅ ̅ n

k = 1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  ℋ̅̃ which implies 

⋂ Pk
n
k = 1  =  ϕ̃ Thus, the above considered family does not 

satisfy the FIP which is a contradiction. Therefore, ⋂ Pkk ∈ J ≠

 ϕ̃. Conversely, assume that the family of Iαg
⋀-closed sets of ℋ 

having FIP has nonempty intersection. To show that ℋ is Iαg
⋀-

compact.  Let {Pk =  {< ℋ, P1k
, P2k

> ; k ∈ J } be an Iαg
⋀-open 

cover of ℋ. Suppose this Iαg
⋀-open cover has no finite Iαg

⋀-

subcover, that is  for every finite subcollection of the given 

cover, say, ⋃ Pk
n
k=1 ≠ ℋ̃  which implies ⋃ Pk

n
k=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≠ ℋ̅̃ which 

implies ⋂ Pk
̅̅ ̅n

k=1 ≠ ϕ̃ . As each Pk is an Iαg
⋀-open set of ℋ 
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therefore, each Pk
̅̅ ̅ is an Iαg

⋀-closed set of ℋ. Thus, { Pk
̅̅ ̅ = <

ℋ, P2k
, P1k

> ∶ k ∈  J} is a family of Iαg
⋀-closed set of ℋ having 

FIP. Hence by the hypothesis it has nonempty intersection, that 

is ⋂ Pk
̅̅ ̅ k ∈ J  ≠  ϕ̃  which implies ⋂ Pk

̅̅ ̅ k ∈ J
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ≠  ϕ̃ ̅  which implies 

⋃ Pkk ∈ J  ≠  ℋ̃. This shows that the family { Pk =  {<

ℋ, P1k
, P2k

> ; k ∈ J}  is not an Iαg
⋀-open cover for ℋ, which is 

a contradiction. Therefore, the given family must have a finite 

Iαg
⋀-subcover and hence  ℋ is Iαg

⋀-compact. 
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