Connectedness And Compactness In Intuitionistic Topological Space

K. Heartlin¹, J. Arul Jesti²

¹Research Scholar, Reg.No.19212212092006

²Assistant Professor, PG and Research

Department of Mathematics,

St. Mary's College(Autonomous),

(Affiliated to Manonmaniam Sundaranar University,

Abishekapatti -627012, Tirunelveli)

Thoothukudi-1,TamilNadu, India

¹ heartlingladson@gmail.com ²aruljesti@gmail.com

ABSTRACT

In this paper, the notion of $I\alpha_g^{\Lambda}$ -connectedness in intuitionistic topological spaces. Also $I\alpha_g^{\Lambda}$ -compactness is defined in intuitionistic topological spaces and several preservation properties are obtained.

1 Introduction

The concept of intuitionistic sets in topological spaces was first introduced by Coker[1] in 1996. He also introduced the concept of intuitionistic points and investigated some fundamental properties of closed sets in intuitionistic topological spaces. Also in 2000 [3], developed the concept of intuitionistic topological spaces with intuitionistic sets and compactness. J.Arul Jesti and K.Heartlin [6] introduced the concept of alpha^generalized closed sets in intuitionistic topological spaces. In this paper some properties of $I\alpha_g^{\Lambda}$ -connectedness in intuitionistic topological spaces and $I\alpha_g^{\Lambda}$ -compactness in intuitionistic topological spaces.

2. Preliminaries

Definition 2.1 [1]: Let $\mathcal H$ be a non-empty set. An intuitionistic set (IS for short) $\mathcal A$ is an object having the form $\mathcal A$ =< $\mathcal H$, $\mathcal A_1$, $\mathcal A_2$ > Where $\mathcal A_1$ and $\mathcal A_2$ are subsets of $\mathcal H$ satisfying $\mathcal A_1 \cap \mathcal A_2 = \varphi$. The set $\mathcal A_1$ is called the set of members of $\mathcal A$, while $\mathcal A_2$ is called set of non members of $\mathcal A$.

Definition 2.2 [1]: Let $\mathcal H$ be a non-empty set and $\mathcal A$ and $\mathfrak B$ are intuitionistic set in the form $\mathcal A=<\mathcal H,\mathcal A_1,\mathcal A_2>$, $\mathfrak B=<\mathcal H,\mathcal B_1,\mathcal B_2>$ respectively. Then

- a) $\mathcal{A} \subseteq \mathfrak{B} \text{ iff } \mathcal{A}_1 \subseteq \mathfrak{B}_1 \text{and } \mathcal{A}_2 \supseteq \mathfrak{B}_2$
- b) $\mathcal{A} = \mathfrak{B} \text{ iff } \mathcal{A} \subseteq \mathfrak{B} \text{ and } \mathfrak{B} \subseteq \mathcal{A}$
- c) $\mathcal{A}^{C} = \langle \mathcal{H}, \mathcal{A}_{2}, \mathcal{A}_{1} \rangle$
- d) $\mathcal{A} \mathfrak{B} = \mathcal{A} \cap \mathfrak{B}^{\mathsf{C}}$
- e) $\phi = \langle \mathcal{H}, \phi, \mathcal{H} \rangle, \mathcal{H} = \langle \mathcal{H}, \mathcal{H}, \phi \rangle$
- f) $\mathcal{A} \cup \mathfrak{B} = \langle \mathcal{H}, \mathcal{A}_1 \cup \mathfrak{B}_1, \mathcal{A}_2 \cap \mathfrak{B}_2 \rangle$
- g) $\mathcal{A} \cap \mathcal{B} = \langle \mathcal{H}, \mathcal{A}_1 \cap \mathcal{B}_1, \mathcal{A}_2 \cup \mathcal{B}_2 \rangle$.

Definition 2.3 [5]: Let $(\mathcal{H}, \mathsf{IT})$ be an intuitionistic topological space. Then \mathcal{H} is called **I-disconnected** if there exists an I-open sets $R \neq \widetilde{\varphi}$ and $S \neq \widetilde{\varphi}$ such that $R \cup S \neq \widetilde{\varphi}$ and $R \cap S \neq \widetilde{\varphi}$. \mathcal{H} is called **I-connected**, if \mathcal{H} is not disconnected.

Definition 2.4 [5]: Let N be an intuitionistic set in the ITS (\mathcal{H} ,I τ). If there exists I-open sets R and S in \mathcal{H} satisfying the following properties, then N is called IC_i-disconnected (i = 1,2,3,4).

IC₁:
$$N \subseteq R \cup S, R \cap S \subseteq N^c$$
, $N \cap R \neq \widetilde{\phi}, N \cap S \neq \widetilde{\phi}$, IC₂: $N \subseteq R \cup S, R \cap S \cap N = \widetilde{\phi}, N \cap R \neq \widetilde{\phi}, N \cap S \neq \widetilde{\phi}$.

 $IC_3: N \subseteq R \cup S, R \cap S \subseteq N^c, R \not\subseteq N^c, S \not\subseteq N^c,$ $IC_4: N \subseteq R \cup S, R \cap S \cap N = \widetilde{\varphi}, R \not\subseteq N^c, S \not\subseteq N^c.$ N is said to be IC_i -connected (i = 1,2,3,4) if N is not IC_i -disconnected (i = 1,2,3,4).

Definition 2.5[7]: An ITS \mathcal{H} is called $I\alpha_g^{\Lambda}$ -disconnected if there exists an $I\alpha_g^{\Lambda}$ -open sets $R \neq \varphi$ and $S \neq \widetilde{\varphi}$ such that $R \cup S = \widetilde{\mathcal{H}}$ and $R \cap S = \widetilde{\varphi}$. \mathcal{H} is called $I\alpha_g^{\Lambda}$ -connected, if \mathcal{H} is not $I\alpha_g^{\Lambda}$ -disconnected.

Definition 2.6 [7]: Let N be an intuitionistic set in the ITS (\mathcal{H} ,I τ). If there exists $I\alpha_g^{\Lambda}$ -open sets R and S in \mathcal{H} satisfying the following properties, then N is called $I\alpha_g^{\Lambda}C_i$ -disconnected (i = 1,2,3,4).

 $\begin{array}{ll} I\alpha_g^{\Lambda}C_1 \colon & N \subseteq R \cup S, R \cap S \subseteq N^c \ , N \cap R \neq \widetilde{\varphi} \ , N \cap S \neq \\ \widetilde{\varphi}, \end{array}$

$$\begin{split} I\alpha_g^{\Lambda}C_2 \colon N \;\subseteq\; R \;\cup\; S, R \;\cap\; S \;\cap\; N \;=\; \widetilde{\varphi}, N \;\cap\; R \neq\; \widetilde{\varphi}, N \;\cap\; S \\ & \neq\; \widetilde{\varphi}. \end{split}$$

 $I\alpha_g^{\Lambda}C_3 \colon N \ \subseteq \ R \ \cup \ S, R \ \cap \ S \ \subseteq \ N^c \ , R \ \not\subseteq N^c, S \not\subseteq N^c,$

 $I\alpha_{g}^{\wedge}C_{4}: N \subseteq R \cup S, R \cap S \cap N = \widetilde{\varphi}, R \not\subseteq N^{c}, S \not\subseteq N^{c}.$

N is said to be $I\alpha_g^{\Lambda}C_i$ -connected (i = 1,2,3,4) if N is not $I\alpha_g^{\Lambda}C_i$ -disconnected (i = 1,2,3,4).

Definition 2.7 [3]: Let $(\mathcal{H}, I\tau)$ be an intuitionistic topological space. If a family $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$ of I-open sets in \mathcal{H} satisfies the condition \cup $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}=\widetilde{\mathcal{H}}$, then it is called an **I-open cover** of \mathcal{H} . A finite subfamily of an $I\alpha_g^{\wedge}$ -open cover $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$ of \mathcal{H} , which is also an I-open cover of \mathcal{H} is called a finite I-subcover of $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$

Definition 2.8 [3]: Let (\mathcal{H}, I_T) be an intuitionistic topological space. A family $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$ of I-closed sets in \mathcal{H} satisfies the finite intersection property iff every finite subfamily $\{P_1, P_2, P_3,, P_n\}$ of P satisfies the condition $\bigcap_{k=1}^n < \mathcal{H}, P_{1_k}, P_{2_k}> \neq \widetilde{\varphi}$.

Definition 2.9 [3]: An ITS $(\mathcal{H}, I\tau)$ is said to be I-compact iff each I-open cover has a finite I-subcover

Definition 2.10 [3]: Let (\mathcal{H}, I_T) be an intuitionistic topological space and G be an IS in \mathcal{H} . The family $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$ of I-open sets in \mathcal{H} is called an I-open cover of G if $G\subseteq \cup \{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$.

Definition 2.11 [3]: An IS $G = \langle \mathcal{H}, G_1, G_2 \rangle$ in an ITS $(\mathcal{H}, I\tau)$ is called I-compact iff every I-open cover of G has a finite I-subcover. Also we can define an IS $G = \langle \mathcal{H}, G_1, G_2 \rangle$ in $(\mathcal{H}, I\tau)$ is I-compact iff for each family $P = \{P_k : k \in J\}$ where $P_k = \{\langle \mathcal{H}, P_{1_k}, P_{2_k} \rangle; k \in J\}$ of I-open sets in $\mathcal{H}, G_1 \subseteq \bigcup_{k \in J} P_{1_k}$ and $G_2 \supseteq \bigcup_{k \in J} P_{2_k}$, there exists a finite subfamily $\{P_1, P_2, P_3,, P_n\}$ of P such that $G_1 \subseteq \bigcup_{k=1}^n P_{1_k}$ and $G_2 \supseteq \bigcup_{k=1}^n P_{2_k}$

Proposition 2.12 [3]: Let $(\mathcal{H}, I\tau)$ be an intuitionistic topological space on \mathcal{H} . Then, we can also construct several ITS's on \mathcal{H} in the following way:

- (a) $|\tau_{0,1}=\{[\] \ G: G\in I\tau\}$, (b) $|\tau_{0,2}=\{<>G: G\in I\tau\}$. **Remark 2.13 [3]:** Let $(\mathcal{H}, I\tau)$ be an intuitionistic topological space.
- (a) $I\tau_1 = \{\mathcal{A}_1: <\mathcal{H}, \mathcal{A}_1, \mathcal{A}_2> \in I\tau\}$ is a topological space on \mathcal{H} . Similarly, $k_2 = \{\mathcal{A}_2: <\mathcal{H}, \mathcal{A}_1, \mathcal{A}_2> \in I\tau\}$ is the family of all closed sets of the topological space $I\tau_2 = \{(\mathcal{A}_2)^c: <\mathcal{H}, \mathcal{A}_1, \mathcal{A}_2> \in I\tau\}$ on \mathcal{H} .
- (b) Since $\mathcal{A}_1 \cap \mathcal{A}_2 = \phi$ for each $\mathcal{A} = \langle \mathcal{H}, \mathcal{A}_1, \mathcal{A}_2 \rangle \in I\tau$, we

obtain $\mathcal{A}_1 \subseteq (\mathcal{A}_2)$ and $\mathcal{A}_2 \subseteq (\mathcal{A}_1)$. Hence, we may conclude that $(\mathcal{H}, \mathsf{I}\tau_1, \mathsf{I}\tau_2)$ is a bitopological space.

3. $I\alpha_{\sigma}^{\wedge}$ -connectedness in Intuitionistic Topological Spaces

Theorem 3.1.: If G_x and G_y are intersecting $I\alpha_g^{\wedge}C_1$ -connected sets, then $G_x \cup G_y$ is also $I\alpha_g^{\wedge}C_1$ -connected.

Proof: Let $G_x \cup G_y$ be $I\alpha_g^{\wedge}C_1$ -disconnected. Then there exists $I\alpha_g^{\wedge}$ -open sets R and S such that $G_x \cup G_y \subseteq R \cup S$, $R \cap S \subseteq (G_x \cup G_y)^c$ and $(G_1 \cup G_y) \cap R \neq \widetilde{\varphi}$, $(G_x \cup G_y) \cap S \neq \widetilde{\varphi}$. Suppose G_x and G_y are $I\alpha_g^{\wedge}C_1$ -connected then $(G_x \cap R = \widetilde{\varphi} \cap G_x \cap S = \widetilde{\varphi})$ and $(G_y \cap R = \widetilde{\varphi} \cap G_y \cap S = \widetilde{\varphi})$. Since $G_x \cap G_y \neq \widetilde{\varphi}$, there exists $\widetilde{p} \in G_x \cap G_y$ of the following cases. Case (i): Let $G_x \cap R = \widetilde{\varphi}$ and $G_y \cap S = \widetilde{\varphi}$. Then $(G_x \cap R) \cup (G_y \cap R) = (G_x \cup G_y) \cap R = \widetilde{\varphi}$ which is a contradiction. Case (ii): Let $G_x \cap R = \widetilde{\varphi}$ and $G_y \cap S = \widetilde{\varphi}$. Then there exists $\widetilde{p} \notin R$, $\widetilde{p} \notin S$ which is impossible since $\widetilde{p} \in G_x \cup G_y \subseteq \mathcal{H} \cup \mathcal{Y}$. Case (iii): Let $G_x \cap S = \widetilde{\varphi}$ and $G_y \cap R = \widetilde{\varphi}$. Then there exists $\widetilde{p} \notin R$, $\widetilde{p} \notin S$ which is impossible as above. Case (iv): Let $G_x \cap S = \widetilde{\varphi}$ and $G_y \cap S = \widetilde{\varphi}$. Then $(G_x \cap S) \cup (G_y \cap S) = (G_x \cup G_y) \cap S = \widetilde{\varphi}$ which is a contradiction. Hence G_x and G_y are $I\alpha_g^{\wedge}C_1$ -disconnected.

Theorem 3.2: If G_x and G_y are intersecting $I\alpha_g^{\Lambda}C_2$ -connected sets, then $G_x \cup G_y$ is also $I\alpha_g^{\Lambda}C_2$ -connected .

Proof: Similar to Theorem 3.1.

Theorem 3.3: Let (G_k) : $k \in J$ be a family of $I\alpha_g^{\wedge}C_1$ -connected sets such that $\cap G_k \neq \tilde{\phi}$. Then $\cup G_k$ is also $I\alpha_g^{\wedge}C_1$ -connected. **Proof:** Let $G = \cup G_k$ be $I\alpha_g^{\wedge}C_1$ -disconnected. Then there exists $I\alpha_g^{\wedge}$ -open sets R and S such that $G \subseteq R \cup S$, $R \cap S \subseteq G^c$, $G \cap R \neq \tilde{\phi}$, $G \cap S \neq \tilde{\phi}$. Consider any index $k_0 \in J$. Since G_{k_0} is $I\alpha_g^{\wedge}C_1$ -connected, we have $G_{k_0} \cap R = \tilde{\phi}$, or $G_{k_0} \cap S = \tilde{\phi}$, So we have three cases. Case (i): If $G_k \cap R = \tilde{\phi}$ for each $G_k \in G_k \cap G_k \cap$

Theorem 3.4: Let (G_k) : $k \in J$ be a family of $I\alpha_g^{\wedge}C_2$ -connected sets such that $\cap G_k \neq \tilde{\phi}$. Then $\cup G_k$ is also $I\alpha_q^{\wedge}C_2$ -connected.

Proof: Similar to Theorem 3.3.

Theorem 3.5: Let $(\mathcal{H}, I\tau)$ be an intuitionistic topological space. Then

- (1) \tilde{a} is $I\alpha_a^{\wedge}C_1$ -connected
- (2) \tilde{a} is $I\alpha_a^{\wedge}C_2$ -connected.

Proof. (1) Suppose \tilde{a} be $I\alpha_g^{\wedge}C_1$ -disconnected. Then there exist $I\alpha_g^{\wedge}$ open sets R and S such that $\tilde{a} \subseteq R \cup S$, $R \cap S \subseteq \tilde{a}^c$, $\tilde{a} \cap R \neq \tilde{\phi}$, $\tilde{a} \cap S \neq \tilde{\phi}$ where $\tilde{a}^c = <\mathcal{H}, \{a\}^c, \{a\} >$. Since $\tilde{a} \cap R \neq \tilde{\phi}$ and $\tilde{a} \cap S \neq \tilde{\phi}$, we get $\tilde{\tilde{a}} \in R$ and $\tilde{\tilde{a}} \in S$. But $R \cap S \subseteq \tilde{a}^c$ implies $R_1 \cap S_1 \subseteq \tilde{a}^c$ and $R_2 \cup S_2 \supseteq \tilde{a}^c$ which is impossible. Hence \tilde{a} is $I\alpha_g^{\wedge}C_1$ -connected. (ii) Let \tilde{a} be $I\alpha_g^{\wedge}C_2$ -disconnected. Then there exist $I\alpha_g^{\wedge}$ -open sets R and S such that $\tilde{a} \subseteq R \cup S$, $R \cap S \cap \tilde{a} = \tilde{\phi}$, $\tilde{a} \cap R \neq \tilde{\phi}$, $\tilde{a} \cap S \neq \tilde{\phi}$. Since $\tilde{a} \cap R \neq \tilde{\phi}$ and $\tilde{a} \cap S \neq \tilde{\phi}$, we get $\tilde{\tilde{a}} \in R$ and $\tilde{\tilde{a}} \in S$ which implies $a \notin R_2$ and $a \notin S_2$. But $R \cap S \cap \tilde{a} = \tilde{\phi}$ which implies $R_2 \cup S_2 \cup \{a\}^c = \tilde{\mathcal{H}}$ which is impossible. Hence \tilde{a} is $I\alpha_g^{\wedge}C_2$ -connected.

4. $I\alpha_g^{\wedge}$ -Compactness In Intuitionistic Topological Spaces In this section we discuss the concepts of an $I\alpha_g^{\wedge}$ -Compactness in intuitionistic topological spaces and also some results are discussed.

Definition 4.1: Let $(\mathcal{H},I\tau)$ be an intuitionistic topological space. If a family $\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$ of $I\alpha_g^{\wedge}$ -open sets in \mathcal{H} satisfies the condition \cup $\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}=\widetilde{\mathcal{H}}$, then it is called an $I\alpha_g^{\wedge}$ -open cover of \mathcal{H} . A finite subfamily of an $I\alpha_g^{\wedge}$ -open cover $\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$ of \mathcal{H} , which is also an $I\alpha_g^{\wedge}$ -open cover of \mathcal{H} is called a finite $I\alpha_g^{\wedge}$ -subcover of $\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$

Definition 4.2: Let $(\mathcal{H},I\tau)$ be an intuitionistic topological space. A family $\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$ of $I\alpha_g^{\wedge}$ -closed sets in \mathcal{H} satisfies the finite intersection property iff every finite subfamily $\{P_1,P_2,P_3,....,P_n\}$ of P satisfies the condition $\bigcap_{k=1}^n <\mathcal{H},P_{1_k},P_{2_k}>\neq \tilde{\phi}$.

Definition 4.3: An ITS $(\mathcal{H}, I\tau)$ is said to be $I\alpha_g^{\wedge}$ -compact iff each $I\alpha_q^{\wedge}$ -open cover has a finite $I\alpha_q^{\wedge}$ -subcover

Definition 4.4: Let $(\mathcal{H},I\tau)$ be an intuitionistic topological space and G be an IS in \mathcal{H} . The family $\{<\mathcal{H},P_{1_k},P_{2_k}>\;;k\in J\}$ of $I\alpha_g^{\wedge}$ -open sets in \mathcal{H} is called an $I\alpha_g^{\wedge}$ -open cover of G if $G\subseteq\cup\{<\mathcal{H},P_{1_k},P_{2_k}>\;;k\in J\}$.

Definition 4.5: An IS $G=<\mathcal{H},G_1,G_2>$ in an ITS $(\mathcal{H},I\tau)$ is called $I\alpha_g^{\wedge}$ -compact iff every $I\alpha_g^{\wedge}$ -open cover of G has a finite $I\alpha_g^{\wedge}$ -subcover. Also we can define an IS $G=<\mathcal{H},G_1,G_2>$ in $(\mathcal{H},I\tau)$ is $I\alpha_g^{\wedge}$ -compact iff for each family $P=\{P_k:k\in J\}$ where $P_k=\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$ of $I\alpha_g^{\wedge}$ -open sets in $\mathcal{H},G_1\subseteq\bigcup_{k\in J}P_{1_k}$ and $G_2\supseteq\bigcup_{k\in J}P_{2_k}$, there exists a finite subfamily $\{P_1,P_2,P_3,....,P_n\}$ of P such that $G_1\subseteq\bigcup_{k=1}^nP_{1_k}$ and $G_2\supseteq\bigcup_{k=1}^nP_{2_k}$.

Proposition 4.6: Let $(\mathcal{H},I\tau)$ be an intuitionistic topological space. Then $(\mathcal{H},I\tau)$ is $I\alpha_g^{\wedge}$ -compact iff the ITS $(\mathcal{H},I\tau_{0,1})$ is $I\alpha_g^{\wedge}$ -compact.

Proof: Necessity: Let $(\mathcal{H},I\tau)$ be $I\alpha_g^{\wedge}$ -compact and consider an $I\alpha_g^{\wedge}$ -open cover $\{[\]P_k: k\in J\}$ of \mathcal{H} in $(\mathcal{H},I\tau_{0,1})$. Since \cup $([\]P_k)=\widetilde{\mathcal{H}}$, we obtain \cup $P_{1_k}=\mathcal{H}$ and hence $P_{2_k}\subseteq (P_{1_k})^c$ which implies \cap $P_{2_k}\subseteq (\cup$ $P_{1_k})^c=\phi$ which implies \cap $P_{2_k}=\phi$ and hence \cup $P_k=\widetilde{\mathcal{H}}$. Since $(\mathcal{H},I\tau)$ is $I\alpha_g^{\wedge}$ -compact, there exists $P_1,P_2,P_3,...,P_n$ such that $\bigcup_{k=1}^n P_k=\widetilde{\mathcal{H}}$ which implies $\bigcup_{k=1}^n P_{1_k}=\mathcal{H}$ and $\bigcap_{k=1}^n P_{2_k}=\phi$. Hence $(\mathcal{H},I\tau_{0,1})$ is $I\alpha_g^{\wedge}$ -compact.

Sufficiency: Suppose $(\mathcal{H}, I\tau_{0,1})$ is $I\alpha_g^{\wedge}$ -compact. Consider an $I\alpha_g^{\wedge}$ -open cover $\{P_k: k\in J\}$ of \mathcal{H} in $(\mathcal{H}, I\tau)$. Since \cup $P_k=\widetilde{\mathcal{H}}$, we obtain \cup $P_{1_k}=\mathcal{H}$ and hence \cap $(P_{1_k})^c=\phi$ which implies \cup $([\]P_k\)=\widetilde{\mathcal{H}}$. Since $(\mathcal{H}, I\tau_{0,1}\)$ is $I\alpha_g^{\wedge}$ -compact, there exists $P_1, P_2, P_3, \ldots, P_n$ such that $\bigcup_{k=1}^n ([\]P_k)=\widetilde{\mathcal{H}}$ which implies $\bigcup_{k=1}^n P_{1_k}=\mathcal{H}$ and $\bigcap_{k=1}^n (P_{1_k})^c=\phi$. Hence $P_{1_k}\subseteq (P_{2_k})^c$ which implies $\mathcal{H}=\bigcup_{k=1}^n P_{1_k}\subseteq (\bigcap_{k=1}^n P_{2_k})^c$ which implies $\bigcap_{k=1}^n P_{2_k}=\phi$. Thus $\bigcup_{k=1}^n P_k=\widetilde{\mathcal{H}}$. So $(\mathcal{H}, I\tau)$ is $I\alpha_g^{\wedge}$ -compact.

Proposition 4.7: The ITS $(\mathcal{H}, I\tau)$ is $I\alpha_g^{\wedge}$ -compact iff $(\mathcal{H}, I\tau_{\mu})$ is $I\alpha_g^{\wedge}$ -compact.

Proof: Similar to Proposition 4.6.

Proposition 5.5.8: Let $f:(\mathcal{H},I\tau_{\mu})\to (\mathcal{Y},I\tau_{\theta})$ be a surjective $I\alpha_g^{\Lambda}$ -continuous mapping. If $(\mathcal{H},I\tau_{\mu})$ is $I\alpha_g^{\Lambda}$ -compact then $(\mathcal{Y},I\tau_{\theta})$ is intuitionistic compact.

Proof: Let $\{P_k: k\in J\}$ be any intuitionistic open cover of \mathcal{Y} . Since f is $I\alpha_g^{\wedge}$ -continuous, $\{f^{-1}(P_k): k\in J\}$ is an $I\alpha_g^{\wedge}$ -open cover of \mathcal{H} . Since $(\mathcal{H},I\tau_{\mu})$ is $I\alpha_g^{\wedge}$ -compact, it has a finite subcover $\{f^{-1}(P_1), f^{-1}(P_2), f^{-1}(P_3), \dots, f^{-1}(P_n)\}$ such that $\bigcup_{k=1}^n f^{-1}(P_{1_k}) = \widetilde{\mathcal{H}}$ and $\bigcap_{k=1}^n f^{-1}(P_{2_k}) = \widetilde{\phi}$ that is $f^{-1}(\bigcup_{k=1}^n (P_{1_k})) = \mathcal{H}$ and $f^{-1}(\bigcap_{k=1}^n (P_{2_k})) = \phi$ which implies $\bigcup_{k=1}^n (P_{1_k}) = f(\mathcal{H})$ and $\bigcap_{k=1}^n (P_{2_k}) = f(\phi)$. Since f is surjective $\{P_1, P_2, P_3, \dots, P_n\}$ is an open cover of \mathcal{Y} and hence $(\mathcal{Y}, I\tau_{\theta})$ is intuitionistic compact.

Corollary 4.9: Let $f:(\mathcal{H},I\tau_{\mu}) \to (\mathcal{Y},I\tau_{\theta})$ be $I\alpha_g^{\wedge}$ -continuous. If N is $I\alpha_g^{\wedge}$ -compact in $(\mathcal{H},I\tau_{\mu})$, then f(N) is intuitionistic compact in $(\mathcal{Y},I\tau_{\theta})$.

Proof: Let $\{G_k: k \in J\}$ be an intuitionistic open set of $\mathcal Y$ such that $f(N) \subseteq \cup \{G_k: k \in J\}$. Then $N \subset \cup \{f^{-1}(G_k): k \in J\}$ where $f^{-1}(G_k)$ is $I\alpha_g^{\wedge}$ -open in $\mathcal H$ for each k. Since N is $I\alpha_g^{\wedge}$ -compact relative to $\mathcal H$, there exists a finite sub collection $\{G_1,G_2,\ldots,G_n\}$ such that $N \subset \cup \{f^{-1}(G_k): k=1,2,\ldots,n\}$. Hence $f(N) \subset f(\cup \{f^{-1}(G_k): k=1,2,\ldots,n\}) = \cup \{f(f^{-1}(G_k)): k=1,2,\ldots,n\} \subset \cup \{G_k: k=1,2,\ldots,n\}$. Hence f(N) is $I\alpha_g^{\wedge}$ -compact relative to $\mathcal Y$.

Proposition 4.10: Let $f: (\mathcal{H}, I\tau_{\mu}) \to (\mathcal{Y}, I\tau_{\theta})$ be an $I\alpha_g^{\wedge}$ -irresolute mapping and if M is $I\alpha_g^{\wedge}$ -compact relative to \mathcal{H} , then f(M) is $I\alpha_g^{\wedge}$ -compact relative to \mathcal{Y} .

Proof. Let $\{P_k: k \in J\}$ be an $I\alpha_g^{\wedge}$ -open set of \mathcal{Y} such that $f(M) \subseteq \cup \{P_k: k \in J\}$. Then $M \subset \cup \{f^{-1}(P_k): k \in J\}$ where $f^{-1}(P_k)$ is $I\alpha_g^{\wedge}$ -open in \mathcal{H} for each k. Since M is $I\alpha_g^{\wedge}$ -compact relative to \mathcal{H} , there exists a finite sub collection $\{P_1, P_2, \ldots, P_n\}$ such that $M \subset \cup \{f^{-1}(P_k): k = 1, 2, \ldots, n\}$ which implies $f(M) \subset \cup \{P_k: k = 1, 2, \ldots, n\}$. Hence f(M) is $I\alpha_g^{\wedge}$ -compact relative to \mathcal{Y} .

Proposition 4.11: Let $f:(\mathcal{H},I\tau_{\mu}) \to (\mathcal{Y},I\tau_{\theta})$ be an $I\alpha_g^{\wedge}$ -irresolute mapping. If \mathcal{H} is $I\alpha_g^{\wedge}$ -compact, then \mathcal{Y} is also an $I\alpha_g^{\wedge}$ -compact space .

Proof. Let $f\colon (\mathcal{H},I\tau_{\mu})\to (\mathcal{Y},I\tau_{\theta})$ be an $I\alpha_g^{\Lambda}$ -irresolute mapping from $I\alpha_g^{\Lambda}$ -compact space $(\mathcal{H},I\tau_{\mu})$ onto an intuitionistic topological space $(\mathcal{Y},I\tau_{\theta})$. Let $\{G_k:k\in J\}$ be an $I\alpha_g^{\Lambda}$ -open cover of \mathcal{Y} . Then $\{f^{-1}(G_k):k\in J\}$ is an $I\alpha_g^{\Lambda}$ -open cover of \mathcal{H} . Since \mathcal{H} is $I\alpha_g^{\Lambda}$ -compact, there is a finite subfamily $\{f^{-1}(G_{k_1}),f^{-1}(G_{k_2}),f^{-1}(G_{k_3}),\ldots,f^{-1}(G_{k_n})\}$ of $\{f^{-1}(G_k):k\in J\}$ such that $\bigcup_{j=1}^n f^{-1}(G_{k_j})=\widetilde{\mathcal{H}}$. Since f is onto, $f(\widetilde{\mathcal{H}})=\widetilde{\mathcal{Y}}$ and $f(\bigcup_{j=1}^n f^{-1}(G_{k_j}))=\bigcup_{j=1}^n f(f^{-1}(G_{k_j}))=\bigcup_{j=1}^n G_{k_j}$. It follows that $\bigcup_{j=1}^n G_{k_j}=\widetilde{\mathcal{Y}}$ and the family $\{G_{k_1},G_{k_2},G_{k_3},\ldots,G_{k_n}\}$ is an intuitionistic finite subcover of $\{G_k:k\in J\}$. Hence $(\mathcal{Y},I\tau_{\theta})$ is an $I\alpha_g^{\Lambda}$ -compact.

Theorem 4.12: An ITS $(\mathcal{H}, I\tau)$ is $I\alpha_g^{\Lambda}$ -compact iff every family $\{<\mathcal{H}, P_{1_k}, P_{2_k}>; k\in J\}$ of $I\alpha_g^{\Lambda}$ -closed sets in A having the FIP has a nonempty intersection.

Proof: Assume that \mathcal{H} is $I\alpha_g^{\wedge}$ -compact that is every $I\alpha_g^{\wedge}$ -open cover of $\mathcal H$ has a finite $I\alpha_g^{\wedge}$ -subcover. Let $P_k = \{<$ \mathcal{H} , P_{1_k} , $P_{2_k} >$; $k \in J$ } be a family of $I\alpha_g^{\wedge}$ -closed sets of \mathcal{H} . Also assume that this family has finite intersection property. We have to show that $\bigcap_{k\,\in\, J} P_k \neq \ \widetilde{\varphi}.$ Suppose on the contrary , $\bigcap_{k \in I} P_k = \widetilde{\phi}$ which implies $\overline{\bigcap_{k \in I} P_k} = \overline{\widetilde{\phi}}$ which implies $\bigcup_{k\in I}\overline{P_k} = \widetilde{\mathcal{H}}$ that is $\bigcup_{k\in I} <\mathcal{H}$, P_{2_k} , $P_{1_k}> = \widetilde{\mathcal{H}}$. Since for every $k \in J$, P_k is an $I\alpha_g^{\wedge}$ -closed set of \mathcal{H} , therefore $\overline{P_k}$ will be an $I\alpha_g^{\wedge}$ -open set of \mathcal{H} . Thus, $\{\overline{P_k} = \langle \mathcal{H}, P_{2_k}, P_{1_k} \rangle : k \in J\}$ is an $I\alpha_g^{\wedge}$ -open cover for \mathcal{H} . Since \mathcal{H} is $I\alpha_g^{\wedge}$ -compact, this $I\alpha_g^{\wedge}$ cover has a finite $I\alpha_g^{\wedge}$ -subcover, say, $\bigcup_{k=1}^n \overline{P_k} = \bigcup_{k=1}^n <$ $\mathcal{H}, P_{2\nu}, P_{1\nu} > = \widetilde{\mathcal{H}}$. Then, $\overline{\bigcup_{k=1}^{n} \overline{P_{k}}} = \overline{\widetilde{\mathcal{H}}}$ which $\bigcap_{k=1}^{n} P_k = \widetilde{\phi}$ Thus, the above considered family does not satisfy the FIP which is a contradiction. Therefore, $\bigcap_{k \in J} P_k \neq$ $\widetilde{\Phi}$. Conversely, assume that the family of I $lpha_{
m g}^{\Lambda}$ -closed sets of ${\cal H}$ having FIP has nonempty intersection. To show that $\mathcal H$ is ${
m I}lpha_{
m g}^{\Lambda}$ compact. Let $\{P_k = \{ <\mathcal{H}, P_{1_k}, P_{2_k} > ; k \in J \}$ be an $I\alpha_g^{\wedge}$ -open cover of \mathcal{H} . Suppose this $I\alpha_g^{\wedge}$ -open cover has no finite $I\alpha_g^{\wedge}$ subcover, that is for every finite subcollection of the given cover, say, $\bigcup_{k=1}^{n} P_k \neq \widetilde{\mathcal{H}}$ which implies $\overline{\bigcup_{k=1}^{n} P_k} \neq \overline{\widetilde{\mathcal{H}}}$ which implies $\bigcap_{k=1}^n \overline{P_k} \neq \widetilde{\phi}$. As each P_k is an $I\alpha_g^{\wedge}$ -open set of $\mathcal H$

therefore, each $\overline{P_k}$ is an $I\alpha_g^{\Lambda}$ -closed set of \mathcal{H} . Thus, $\{\overline{P_k}=<\mathcal{H},P_{2_k},P_{1_k}>:k\in J\}$ is a family of $I\alpha_g^{\Lambda}$ -closed set of \mathcal{H} having FIP. Hence by the hypothesis it has nonempty intersection, that is $\bigcap_{k\in J}\overline{P_k}\neq\widetilde{\Phi}$ which implies $\overline{\bigcap_{k\in J}\overline{P_k}}\neq\widetilde{\Phi}$ which implies $\bigcup_{k\in J}P_k\neq\widetilde{\mathcal{H}}$. This shows that the family $\{P_k=\{<\mathcal{H},P_{1_k},P_{2_k}>;k\in J\}$ is not an $I\alpha_g^{\Lambda}$ -open cover for \mathcal{H} , which is a contradiction. Therefore, the given family must have a finite $I\alpha_g^{\Lambda}$ -subcover and hence \mathcal{H} is $I\alpha_g^{\Lambda}$ -compact.

REFERENCE

- [1] Coker, D. 1996, A Note On Intuitionistic Sets and Intuitionistic Points, Turkish Journal of Mathematics Vol 20, No 3, pp 343-351.
- [2] Coker, D. 1997, An introduction to intuitionistic fuzzy topological spaces, fuzzy sets and Systems Vol 88, No 1, pp81-89
- [3] Coker, D. 2000, An introduction to intuitionistic topological spaces, Bulletin for Studies and Exchanges of Fuzziness and its Applications, Vol.81, pp. 51-56.
- [4] Selma ozcag and Coker, D. 1998, on Connectedness in Intuitionistic fuzzy special Topological Spaces. Int. J. Math. Math. sci., Vol 21, No 1, pp 33-40.
- [5] Selma ozcag and Coker, D. 2000, A Note On Connectedness in Intuitionistic fuzzy special Topological Spaces. Int. J. Math. Math. sci., Vol 23, No1, pp 45-54.
- [6] Heartlin. K. and Arul Jesti.
 J., 2022, A New Notion of Closed Sets in Intuitionistic Topological
 Spaces in Journal of Algebraic Statistics Vol 13, No.2, pp.3188-3196.
- [7] Heartlin. K. and Arul Jesti. J., Proceeding of paper entitled as "On $I\alpha_g^{\Lambda}$ -Connectedness in Intuitionistic Topological Spaces" of ICRTMA-2022, ISBN: 978-93-5680-181-3, Pg.No:57-66.