A(Gg)*- Locally Closed Sets In Topological Spaces

Abhirami G1* and Shyla Isac Mary T2

¹Research Scholar (Reg No: 21113112092011) and ²Assistant Professor Research Department of Mathematics,

Nesamony Memorial Christian College, Marthandam, Kanniyakumari District-629 165,

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

E mail: abhiramigirish97@gmail.com

Abstract

In this paper we introduce the concept of $\alpha(gg)^*$ -lc , $\alpha(gg)^*$ -lc and $\alpha(gg)^*$ -lc sets using the concept of $\alpha(gg)^*$ -open and $\alpha(gg)^*$ -closed sets. Also, we present some of the weaker forms of locally continuous functions.

Keywords: $\alpha(gg)^*$ -lc sets, $\alpha(gg)^*$ -lc*sets, $\alpha(gg)^*$ -lc*sets, $\alpha(gg)^*$ -lc continuous functions

I. INTRODUCTION

In 1921, Kuratowski and Sierpinski [1] introduced the notion of locally closed sets in topological spaces. In 1989, Ganster and Reilly [5] introduced the concept of LC- continuous and LC-irresolute maps using locally closed sets. Later on, many researchers have investigated on this topic and introduced different types of locally closed sets. In 2022, authors [2] introduced $\alpha(gg)^*$ - closed sets in topological spaces. In this paper, authors put forth the concept of $\alpha(gg)^*$ -lc, $\alpha(gg)^*$ -lc*and $\alpha(gg)^*$ -lc* sets using the concept of $\alpha(gg)^*$ - open and $\alpha(gg)^*$ - closed sets. Later on, we discussed about $\alpha(gg)^*$ -LC continuous (resp. $\alpha(gg)^*$ -lc irresolute) functions and some of its basic properties are examined

II. PRELIMINARIES

Throughout this paper (X, τ) represents the topological spaces on which no separation axioms are assumed unless otherwise mentioned. A being a subset of a topological space (X, τ) , cl(A), int(A) denote the closure of A and interior of A respectively.

Definition.2.1.[2] A set A of a topological space (X, τ) is called alpha generalization of generalized star closed (briefly $\alpha(gg)^*$ -

closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(gg)^*$ - open in (X, τ) .

Definition.2.2.[5] A set A of a topological space (X, τ) is called locally closed if $A = G \cap F$, where G is open and F is closed.

Definition.2.4. A function $f: X \to Y$ is called

- (i) $\alpha(gg)^*$ -continuous [3] if $f^{-1}(V)$ is $\alpha(gg)^*$ -closed in X for every closed subset V of Y.
- (ii) $\alpha(gg)^*$ -irresolute if $f^{-1}(V)$ is $\alpha(gg)^*$ -closed in (X, τ) for every $\alpha(gg)^*$ -closed subset V of (Y, σ) .

Definition.2.5.[4] A topological space (X, τ) is said to be a door space iff every subset of X is either open or closed.

Lemma.2.6.[2] Every closed set is $\alpha(gg)^*$ -closed.

III. MAIN RESULTS

Definition.3.1. A set A of a topological space (X,τ) is called $\alpha(gg)^*$ -locally closed (briefly $\alpha(gg)^*$ -lc) if $A = G \cap F$, where G is an $\alpha(gg)^*$ -open set and F is an $\alpha(gg)^*$ -closed set.

Theorem 3.2.

- (i) Every $\alpha(gg)^*$ -open set in X is $\alpha(gg)^*$ -lc.
- (ii) Every $\alpha(gg)^*$ -closed set in X is $\alpha(gg)^*$ -lc.

Proof.

- (i) Let A be an $\alpha(gg)^*$ -open set in X. Then $A=A\cap X$, where A is $\alpha(gg)^*$ -open and X is $\alpha(gg)^*$ -closed. Thus A is $\alpha(gg)^*$ -lc.
- (ii) Let A be an $\alpha(gg)^*$ -closed set in X. Then $A = X \cap A$, where X is $\alpha(gg)^*$ -open and A is $\alpha(gg)^*$ -closed. Thus A is $\alpha(gg)^*$ -lc.

Remark 3.3. The converse of the above theorem need not be true in general as seen from the following example.

Example 3.4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}\}$

- (i) $\{c,d\} = X \cap \{c,d\}$. Here $\{c,d\}$ is $\alpha(gg)^*$ -lc but not $\alpha(gg)^*$ -open.
- (ii){a} = {a,c} \cap {a,d}. Here {a} is $\alpha(gg)^*$ -lc but not $\alpha(gg)^*$ -closed.

Theorem 3.5. In a topological space (X, τ)

Every open set is $\alpha(gg)^*$ -lc.

(i) Every closed set is $\alpha(gg)^*$ -lc.

Proof.

- (i) Let **A** be an open set in **X**. Then **A** is $\alpha(gg)^*$ -open in **X**. Thus, **A** is $\alpha(gg)^*$ -lc in **X**.
- (ii) Let **A** be a closed set in **X**. Then **A** is $\alpha(gg)^*$ -closed in **X**. Thus, **A** is $\alpha(gg)^*$ -lc in **X**.

Remark 3.6. The converse of the above theorem need not be true in general as seen from the following example.

Example 3.7. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}\}$

- (i) $\{b,c\} = \{a,b,c\} \cap \{b,c,d\}$. Here $\{b,c\}$ is $\alpha(gg)^*$ -lc but not open.
- (ii) $\{a,b\} = \{a,b,c\} \cap \{a,b,d\}$. Here $\{a,b\}$ is $\alpha(gg)^*$ -lc but not closed.

Theorem 3.8. Every locally closed set is $\alpha(gg)^*$ -locally closed.

Proof. Let A be a locally closed subset of X. Then $A = G \cap F$, where G is open and F is closed. That is, $A = G \cap F$, where G is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed. Thus, A is $\alpha(gg)^*$ - locally closed in X.

Remark 3.9. The converse of the above theorem need not be true in general as seen from the following example.

Example 3.10. Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b, c\}\}$. Then $\{c\} = \{a, c\} \cap \{b, c\}$ is $\alpha(gg)^*$ -locally closed but not locally closed.

Theorem 3.11. A subset A of X is $\alpha(gg)^*$ -lc if and only if its complement, A^c is the union of an $\alpha(gg)^*$ -open set and an $\alpha(gg)^*$ -closed set.

Proof. Let A be an $\alpha(gg)^*$ -lc set in (X,τ) . Then $A=G\cap F$, where G is $\alpha(gg)^*$ -openand F is $\alpha(gg)^*$ -closed. This implies that, $A^c=(G\cap F)^c=F^c\cup G^c$, where F^c is $\alpha(gg)^*$ -open and G^c is $\alpha(gg)^*$ -closed. Conversely, assume that A^c is the union of an $\alpha(gg)^*$ -open set and an $\alpha(gg)^*$ -closed set. That is, $A^c=G\cup F$, where G is $\alpha(gg)^*$ -open and G is $\alpha(gg)^*$ -closed. This implies that $(A^c)^c=(G\cup F)^c$. That is, $A=F^c\cap G^c$, where F^c is $\alpha(gg)^*$ -open and G^c is $\alpha(gg)^*$ -closed. Thus, G is $\alpha(gg)^*$ -closed.

Theorem 3.12. Let $f: X \to Y$ be a continuous function. If K is locally closed subset of Y, then $f^{-1}(K)$ is $\alpha(gg)^*$ -lc in X.

Proof. Let K be a locally closed subset of Y. Then $K = G \cap F$, where G is open and F is closed. This implies that $f^{-1}(K) = f^{-1}(G \cap F) = f^{-1}(G) \cap f^{-1}(F)$, where $f^{-1}(G)$ is open and $f^{-1}(F)$ is closed. That is, $f^{-1}(K) = f^{-1}(G) \cap f^{-1}(F)$, where $f^{-1}(G)$ is $\alpha(gg)^*$ -open and $f^{-1}(F)$ is $\alpha(gg)^*$ -closed. Thus, $f^{-1}(K)$ is $\alpha(gg)^*$ -lc in X.

Theorem 3.13. For a subset A of a topological space X

- (i) A is $\alpha(gg)^*$ -lc.
- (ii) $A = U \cap \alpha(gg)^* cl(A)$ for some $\alpha(gg)^*$ -open set U.

Proof.

(i)⇒(ii)

Suppose A is $\alpha(gg)^*$ -lc. Then $A=U\cap F$, where U is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed. That is, $\alpha(gg)^*\mathrm{cl}(A)=\alpha(gg)^*\mathrm{cl}(U\cap F)\subseteq \alpha(gg)^*\mathrm{cl}(U)\cap \alpha(gg)^*\mathrm{cl}(F)\subseteq \alpha(gg)^*\mathrm{cl}(F)=F$. Thus, $\alpha(gg)^*\mathrm{cl}(A)\subseteq F$. Then $A\subseteq U\cap \alpha(gg)^*\mathrm{cl}(A)\subseteq U\cap F=A$. Hence $A=U\cap \alpha(gg)^*\mathrm{cl}(A)$.

Suppose that $A = U \cap \alpha(gg)^* cl(A)$ for some $\alpha(gg)^*$ -open set U. Since cl(A) is closed, by Lemma.2.6 the theorem follows.

IV. $\alpha(gg)^*$ -locally closed* sets

Definition 4.1. A subset A of a topological space (X, τ) is an $\alpha(gg)^*$ -locally closed* (briefly $\alpha(gg)^*$ -lc*) set if there exists an $\alpha(gg)^*$ -open set G and a closed set F in X such that $A = G \cap F$. The set of all $\alpha(gg)^*$ -lc* subsets of (X, τ) is denoted by $\alpha(GG)^*$ -LC* (X, τ) .

Theorem 4.2. Every locally closed set is $\alpha(gg)^*-lc^*$ **Proof.** Let A be a locally closed set in X. Then $A=G\cap F$, where G is open and F is closed in X. This implies that $A=G\cap F$, where G is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed in X. Thus, A is $\alpha(gg)^*-lc^*$ in X.

Remark 4.3. The converse of the above theorem need not be true in general as seen from the following example.

Example 4.4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Here $\{b, c\} = \{b, c, d\} \cap \{a, b, c\}$ is $\alpha(gg)^*$ -lc* but not locally closed.

Theorem 4.5. Every $\alpha(gg)^*$ -lc* set in X is $\alpha(gg)^*$ -lc.

Proof. Let A be an $\alpha(gg)^*$ - lc^* set in X. Then Then $A = G \cap F$, where G is $\alpha(gg)^*$ -openand F is closed in X. This implies that $A = G \cap F$, where G is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed in X. Thus, A is $\alpha(gg)^*$ - lc^* in X.

Theorem 4.6. A subset A of a topological space X is $\alpha(gg)^*$ -lc* if and only if $A = G \cap cl(A)$, for some $\alpha(gg)^*$ -open set G.

Proof. Suppose A is $\alpha(gg)^*$ -lc*. Then $A=G\cap F$, where G is $\alpha(gg)^*$ -open and F is closed. Then $cl(A)=cl(G\cap F)\subseteq cl(G)\cap cl(F)\subseteq cl(F)=F$. Then $A\subseteq G\cap cl(A)\subseteq G\cap F=A$ and hence $A=G\cap cl(A)$. Conversely, suppose that $A=G\cap cl(A)$, for some $\alpha(gg)^*$ -open set G. That is, A is the intersection of an $\alpha(gg)^*$ -open set and a closed set. Hence A is $\alpha(gg)^*$ -lc*.

Theorem 4.7. If for a subset K of X, K \cup (cl(K))^c is $\alpha(gg)^*$ -open, then K is $\alpha(gg)^*$ -lc*.

Proof. Let $K \cup (cl(K))^c$ is $\alpha(gg)^*$ -open. To prove that K is $\alpha(gg)^*$ -lc*. For, $K = K \cup \varphi = K \cup ((cl(K))^c \cap cl(K)) = (K \cup (cl(K))^c) \cap (K \cup cl(K)) = (K \cup (cl(K))^c) \cap cl(K)$, since $K \subseteq cl(K)$. So, if $K \cup (cl(K))^c$ is $\alpha(gg)^*$ -open, then K is the intersection of an $\alpha(gg)^*$ - open set and a closed set. Hence K is $\alpha(gg)^*$ -lc*.

Theorem 4.8. If for a subset of X, the set cl(K) - K is $\alpha(gg)^*$ -closed, then K is $\alpha(gg)^*$ -lc*.

Proof. For any subset K of X, $cl(K) - K = cl(K) \cap K^c = ((cl(K))^c \cup K)^c$.

Since cl(K) – K is $\alpha(gg)^*$ -closed, $K \cup (cl(K))^c$ is $\alpha(gg)^*$ -open. Then by Theorem 4.7, K is $\alpha(gg)^*$ - lc^* .

V. $\alpha(gg)^*$ -locally closed**sets

Definition 5.1. A subset A of a topological space (X,τ) is $\alpha(gg)^*$ -locally closed**(briefly $\alpha(gg)^*$ -lc**) set if there exists an open set G and an $\alpha(gg)^*$ -closed set F such that $A = G \cap F$. The set of all $\alpha(gg)^*$ -lc** sets is denoted by $\alpha(GG)^*$ -LC** (X,τ) .

Theorem 5.2. Every locally closed set of X is $\alpha(gg)^*$ -lc**.

Proof. Let A be a locally closed set in X. Then $A = G \cap F$, where G is open and F isclosed in X. This implies that

 $A = G \cap F$, where G is open and F is $\alpha(gg)^*$ -closed in X. Thus, A is $\alpha(gg)^*$ - lc^{**} set in X.

Remark 5.3. The converse of the above theorem need not be true in general as seen from the following example.

Example 5.4. Let $X=\{a,b,c\}$ with topology $\tau=\{\varphi,c\,,X\}$. Here $\{c\}=\{c\}\cap\{b,c\}$ is $\alpha(gg)^*$ -lc** but not locally closed.

Theorem 5.5. Every $\alpha(gg)^*$ -lc** set in X is $\alpha(gg)^*$ -lc.

Proof. Let A be an $\alpha(gg)^*$ - lc^{**} set in X. Then $A=G\cap F$, where G is open and F is $\alpha(gg)^*$ -closed. This implies that $A=G\cap F$, where G is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed. Thus, A is $\alpha(gg)^*$ -lc set in X.

Remark 5.6. The converse of the above theorem need not be true in general as seen from the following example.

Example 5.7. Let $X = \{a, b, c\}$ with topology $\tau = \{\varphi, \{a\}, \{b, c\}, X\}$. Here $\{b\} = \{a, b\} \cap \{b, c\}$ is $\alpha(gg)^*$ -lc but not $\alpha(gg)^*$ -lc**.

Remark 5.8. The diagram shows the relation connecting all the locally closed sets.

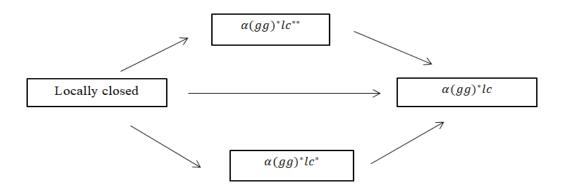


Figure: 1

Theorem 5.9.

- (i) If $A \in \alpha(GG)^*LC^*(X,\tau)$ and B is closed in (X,τ) then $A \cap B \in \alpha(GG)^*LC^*(X,\tau)$.
- (ii) If $A \in \alpha(GG)^*LC ** (X, \tau)$ and B is open in (X, τ) then $A \cap B \in \alpha(GG)^*LC^{**}(X, \tau)$.

Proof.

(i) Given that $A \in \alpha(GG)^*LC^*(X,\tau)$ and B is closed in X. Then $A = G \cap F$, where G is $\alpha(gg)^*$ -

open and F is closed in X. Also given, B is closed in X. This implies that $A \cap B = (G \cap F) \cap B = G \cap (F \cap B)$, where G is $\alpha(gg)^*$ -open and $F \cap B$ is closed. Thus, $A \cap B \in \alpha(GG)^*LC^*(X, \tau)$.

(ii) Given that $A \in \alpha(GG)^*LC^{**}(X,\tau)$ and B is open in X. Then $A=G\cap F$, where G is open and F is $\alpha(gg)^*$ -closed in X. Also given, B is open in X. This implies that $A\cap B=(G\cap F)\cap B=(G\cap B)\cap F$, where $G\cap B$ is open and F is $\alpha(gg)^*$ -closed.Thus, $A\cap B\in \alpha(GG)^*LC^{**}(X,\tau)$.

Theorem 5.10. If every $\alpha(gg)^*$ -closed set is closed in (X,τ) , then $\alpha(GG)^*LC(X,\tau) = \alpha(GG)^*LC^*(X,\tau)$.

Proof. Let $A \in \alpha(GG)^*LC(X,\tau)$. Then $A = G \cap F$, where G is $\alpha(gg)^*$ -open and F is $\alpha(gg)^*$ -closed in X. This implies that $A = G \cap F$, where G is $\alpha(gg)^*$ -open and F is closed in X. Then $A \in \alpha(GG)^*LC^*(X,\tau)$. That is, $\alpha(GG)^*LC(X,\tau) \subseteq \alpha(GG)^*LC^*(X,\tau)$. From Theorem 4.5, it is clear that $\alpha(GG)^*LC^*(X,\tau) \subseteq \alpha(GG)^*LC(X,\tau)$. Hence $\alpha(GG)^*LC(X,\tau) = \alpha(GG)^*LC^*(X,\tau)$.

VI. $\alpha(gg)^*$ -Locally Continuous Functions

Definition 6.1. Let $f: X \to Y$ be a function. Then f is called

- (i) $\alpha(GG)^*$ -LC continuous if $f^{-1}(V) \in \alpha(GG)^*$ LC (X) for each open set V of Y.
- (ii) $\alpha(GG)^*$ -LC* continuous if $f^{-1}(V) \in \alpha(GG)^*$ LC* (X) for each open set V of Y.
- (iii) $\alpha(GG)^*\text{-LC}^{**}$ continuous if $f^{-1}(V) \in \alpha(GG)^*\text{-LC}^{**}(X)$ for each open set V of .

Theorem 6.2.

(i) Every $\alpha(gg)^*$ -lc*continuous function is $\alpha(gg)^*$ -lc continuous.

(ii) E

very $\alpha(gg)^*$ -lc**continuous function is $\alpha(gg)^*$ -lc continuous.

Proof.

(i) Let f be a map that is $\alpha(gg)^*$ -lc* continuous. Then for every open set V of Y, $f^{-1}(V) \in$

- $\alpha(GG)^*LC^*(X)$. By Theorem 4.5, $f^{-1}(V) \in \alpha(GG)^*LC(X)$. That is, for every open set V of V, $f^{-1}(V) \in \alpha(GG)^*LC(X)$. Therefore, f is $\alpha(gg)^*-lc$ continuous.
- (ii) Let f be a map that is $\alpha(gg)^*$ -lc** continuous. Then for every open set V of Y, $f^{-1}(V) \in \alpha(GG)^*LC^{**}(X)$. By Theorem 5.5, $f^{-1}(V) \in \alpha(GG)^*LC(X)$. That is, for every open set V of Y, $f^{-1}(V) \in \alpha(GG)^*LC(X)$. Therefore, f is $\alpha(gg)^*$ -lc continuous.

Theorem 6.3. If f is a locally continuous function then f is $\alpha(gg)^*$ -lc continuous (resp. $\alpha(gg)^*$ -lc* continuous, $\alpha(gg)^*$ -lc** continuous).

Proof. Let f be locally continuous. Then for every open set V of Y, $f^{-1}(V) \in LC(X)$. We know that every locally closed set in X is $\alpha(gg)^*$ -lc (resp. $\alpha(gg)^*$ -lc*, $\alpha(gg)^*$ -lc**). That is for every open set V in Y, $f^{-1}(V) \in \alpha(GG)^*LC$ (X) (resp. $f^{-1}(V) \in \alpha(GG)^*LC^*(X)$). Therefore, f is $\alpha(gg)^*$ -lc continuous (resp. $\alpha(gg)^*$ -lc* continuous).

Theorem 6.4. If X is a door space, then every map f is

- (i) $\alpha(gg)^*$ -lc continuous.
- (ii) $\alpha(gg)^*$ -lc* continuous.
- (iii) $\alpha(gg)^*-lc^{**}$ continuous.

Proof.

- (i) Let X be a door space and f be a map. Let A be any open set in Y. Since X is a door space, $f^{-1}(A)$ is either open or closed in X. Clearly, for every openset A in Y, $f^{-1}(A)$ is either $\alpha(gg)^*$ -open or $\alpha(gg)^*$ -closed in X. This implies that for every open set A in Y, $f^{-1}(A) = f^{-1}(A) \cap X$, where $f^{-1}(A)$ is $\alpha(gg)^*$ -open and X is $\alpha(gg)^*$ -closed (or) $f^{-1}(A) = X \cap f^{-1}(A)$, where X is $\alpha(gg)^*$ -open and $f^{-1}(A)$ is $\alpha(gg)^*$ -closed. That is, for every open set A in Y, $f^{-1}(A)$ is $\alpha(gg)^*$ -lc set in X. Thus, f is $\alpha(gg)^*$ -lc continuous.
- (ii) For any open set A in Y, $f^{-1}(A)$ is either open or closed in X. Then for every open set A in Y, $f^{-1}(A)$ is either $\alpha(gg)^*$ -open or $\alpha(gg)^*$ -closed in X. This implies that for every open set A in Y, $f^{-1}(A) = f^{-1}(A) \cap X$, where $f^{-1}(A)$ is $\alpha(gg)^*$ -

open and X is closed (or) $f^{-1}(A) = X \cap f^{-1}(A)$, where X is $\alpha(gg)^*$ -open and $f^{-1}(A)$ is closed. That is, for every open set A in Y, $f^{-1}(A)$ is $\alpha(gg)^*$ -lc* set in X. Thus, f is $\alpha(gg)^*$ -lc*continuous.

(iii) For any open set A in Y, $f^{-1}(A)$ is either open or closed in X. Then for everyopen set A in Y, $f^{-1}(A)$ is either $\alpha(gg)^*$ -open or $\alpha(gg)^*$ -closed in X. This implies that for every open set A in Y, $f^{-1}(A) = f^{-1}(A) \cap X$, where $f^{-1}(A)$ is open and X is $\alpha(gg)^*$ -closed (or) $f^{-1}(A) = X \cap f^{-1}(A)$, where X is open and $f^{-1}(A)$ is $\alpha(gg)^*$ -closed. That is, for every open set A in Y, $f^{-1}(A)$ is $\alpha(gg)^*$ -lc** set in X. Thus, f is $\alpha(gg)^*$ -lc**continuous.

Theorem 6.5. If $f: (X,\tau) \to (Y,\sigma)$ is $\alpha(gg)^*-lc$ continuous (resp. $\alpha(gg)^*-lc^*$ continuous, $\alpha(gg)^*-lc^{**}$ continuous) map and $g: (Y,\sigma) \to (Z,\eta)$ is a continuous map, then $gof: (X,\tau) \to (Z,\eta)$ is $\alpha(gg)^*-lc$ continuous (resp. $\alpha(gg)^*-lc^*$ continuous).

Proof. Let g be continuous and f be $\alpha(gg)^*$ -lc continuous. Since g is continuous, for every open set U in Z, $g^{-1}(U)$ is open in Y. Since f is $\alpha(gg)^*$ -lc continuous, for every open set $g^{-1}(U)$ in Y, $f^{-1}(g^{-1}(U))$ is $\alpha(gg)^*$ -lc in X. That is, for every open set $g^{-1}(U)$ in Y, $(gof)^{-1}(U)$ is $\alpha(gg)^*$ -lc in X. Thus, $gof: (X,\tau) \to (Z,\eta)$ is $\alpha(gg)^*$ -lc continuous. Similarly, we can prove the other two.

VII. $\alpha(gg)^*$ -lc irresolute maps

Definition 7.1. A map $f: (X, \tau) \to (Y, \sigma)$ is called $\alpha(gg)^*$ -lc irresolute if for every $\alpha(gg)^*$ -lc set V in Y, its inverse $f^{-1}(V)$ is $\alpha(gg)^*$ -lc in X.

Similarly, we can define $\alpha(gg)^*$ - $1c^*$ irresolute and $\alpha(gg)^*$ - $1c^{**}$ irresolute.

Theorem 7.2. Let $f: X \to Y$ be an $\alpha(gg)^*$ -irresolute map. If $K \in \alpha(GG)^*LC(Y)$ then $f^{-1}(K) \in \alpha(GG)^*LC(X)$.

Proof. Let $f: X \to Y$ be an $\alpha(gg)^*$ -irresolute function. Let $K \in \alpha(GG)^*LC(Y)$. Then $= U \cap V$, where U is $\alpha(gg)^*$ -open and V is $\alpha(gg)^*$ -closed. This implies that f^{-1} (K) =

 $f^{-1}(U) \cap f^{-1}(V)$. Since f is $\alpha(gg)^*$ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are $\alpha(gg)^*$ -open and $\alpha(gg)^*$ -closed in X respectively. Therefore, $f^{-1}(K) \in \alpha(GG)^*LC(X)$.

Theorem 7.3. Let $f: X \to Y$ be $\alpha(gg)^*$ -irresolute. Then f is $\alpha(gg)^*$ -lc irresolute.

Proof. It follows from previous theorem.

Remark 7.4. The converse of the above theorem need not be true in general as seen from the following example.

Example 7.5. Let $X = \{a,b,c\}$ with topologies $\tau = \{\varphi, \{a\}, \{b\}, \{a,b\}, X\}$ and $\sigma = \{\varphi, \{a,c\}, Y\}$ on X and Y respectively. Define a function $f: (X,\tau) \to (Y,\sigma)$ such that f(a) = c, f(b) = a, f(c) = b. Here f is $\alpha(gg)^*$ -lc irresolute, but not $\alpha(gg)^*$ -irresolute. Since for the $\alpha(gg)^*$ -closed set $\{c\}$ in , its inverse image $\{a\}$ is not $\alpha(gg)^*$ -closed in X.

Theorem 7.6. Any function defined on a door space is $\alpha(gg)^*$ -lc irresolute.

Proof. Let $f: X \to Y$ be a function, where X is a door space and Y is any space. Let $V \in \alpha(GG)^*LC(Y)$. Then by our assumption, $f^{-1}(V)$ is either open or closed. We know that, every closed set is $\alpha(gg)^*$ -closed. Now, $f^{-1}(V) = X \cap f^{-1}(V)$, where X is $\alpha(gg)^*$ -open and $f^{-1}(V)$ is $\alpha(gg)^*$ -closed. Therefore, $f^{-1}(V) \in \alpha(GG)^*LC(X)$. Thus, f is $\alpha(gg)^*$ -lc irresolute.

Theorem 7.7. Let $f: X \to Y$ and $g: Y \to Z$ be any two maps. Then

- (i) gof: $X \to Z$ is $\alpha(gg)^*$ -lc irresolute(resp. $\alpha(gg)^*$ -lc* irresolute, $\alpha(gg)^*$ -lc** irresolute) if f is $\alpha(gg)^*$ -lc irresolute(resp. $\alpha(gg)^*$ -lc* irresolute, $\alpha(gg)^*$ -lc** irresolute) and g is $\alpha(gg)^*$ -lc irresolute(resp. $\alpha(gg)^*$ -lc* irresolute, $\alpha(gg)^*$ -lc* irresolute).
- (ii) gof: $X \to Z$ is $\alpha(gg)^*$ -lc continuous if f is $\alpha(gg)^*$ -lc irresolute and g is $\alpha(gg)^*$ -lc continuous.

Proof.

(i) Let $V \in \alpha(GG)^*LC(Z)$ (resp. $V \in \alpha(GG)^*LC^*(Z)$, $V \in \alpha(GG)^*LC^{**}(Z)$. Since g is $\alpha(gg)^*$ -lc irresolute (resp. $\alpha(gg)^*$ -lc* irresolute, $\alpha(gg)^*$ -lc** irresolute), $g^{-1}(V) \in \alpha(GG)^*LC(Y)$ (resp. $g^{-1}(V) \in \alpha(GG)^*LC(Y)$)

- $\begin{array}{ll} \alpha(GG)^*LC^*(Y), & g^{-1}(V) \in \alpha(GG)^*LC^*(Y)). \ \text{Since} \\ f & \text{is} & \alpha(gg)^*\text{-lc} & \text{irresolute} & (\text{resp.} & \alpha(gg)^*\text{-lc}^*\text{irresolute}), \\ f^{-1}(S^{-1}(V)) & (GG)^*\text{-lc}^$
- (ii) Let V be any open set in Z. Since g is $\alpha(gg)^*$ -lc continuous, $g^{-1}(V) \in \alpha(GG)^*LC(X)$. Since f is $\alpha(gg)^*$ -lc irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in \alpha(GG)^*LC(X)$. Therefore, gof is $\alpha(gg)^*$ -lc continuous.

REFERENCES

- [1] C. Kuratowski and W. Sierpinski. Sur les differences de deux ensembles fermes, Tohoku Math. J., 20(1921).
- [2] G. Abhirami and T. Shyla Isac Mary , $\alpha(gg)^*$ closed sets in Topological Spaces, International Journal of Mathematical Trends and Technology, 68(2022), 5-10.
- $\begin{tabular}{lll} [3] & G. & Abhirami & and & T. & Shyla & Isac & Mary & , & $\alpha(gg)^*$-continuous functions in topological spaces, \\ & Proceedings of the National seminar on Current Trends \\ & in Literary and Mathematical Studies, 2023, 1-17. \\ \end{tabular}$
- [4] J. L. Kelly, General Topology, Princeton, NJ. D. Van Nastrand, 1955.
- [5] M. Ganster, I. L. Reilly and M. K. Vamanamurthy, Locally closed sets and LC- continuous functions, In. Jl. Math. Soc.,12(1989), 417-424.