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Abstract 

A simple graphoidal cover of a semigraph G is a graphoidal 

cover Ψ of G such that any two paths in Ψ have atmost one 

end vertex in common. The minimum cardinality of a simple 

graphoidal cover of G is called the simple graphoidal 

covering number of a semigraph and is denoted by ηs(G). A 

simple acyclic graphoidal cover of a semigraph G is an acyclic 

graphoidal cover Ψ of G such that any two paths in Ψ have 

atmost one end vertex in common. The minimum cardinality 

of a simple acyclic graphoidal cover of G is called the simple 

acyclic graphoidal covering number of a semigraph and is 

denoted by ηas(G). In this paper we find the simple acyclic 

graphoidal covering number for wheel in a semigraph, 

unicycle in a semigraph and zero-divisor graph. 

 

Keywords: graphoidal cover, semigraph, simple acyclic 

graphoidal cover. 

 

1 Introduction 

Sampathkumar and Acharya initially established the idea of 

graphoidal covers and graphoidal covering number in [1]. 

Following that, a variety of topics were introduced and 

thoroughly in- vestigated, including domination in 

graphoidally covered graphs, acyclic graphoidal covering 

number, graphoidal graphs, etc. 

 

A semigraph G is a pair (V, X), where V is a non-empty 

set whose elements are called vertices of G, and X is a 
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set of n-tuples, called edges of G, of distinct vertices, for 

various n ≥ 2, satisfying the following conditions. 

S.G.-1 Any two edges have atmost one vertex in 

common. 

S.G.-2 Two edges (u1, u2, . . . , un) and (v1, v2, . . . , vm) 

are considered to be equal if and only if 

 

(i) m= n and 

 

(ii) either ui = vi, for 1 ≤ i ≤ n, or ui = vn−i+1, for 

1 ≤ i ≤ n. [6] 

Let G = (V, X) be a semigraph and E =

(v1, v2, . . . , vn) be an edge of G. Then v1 and vn   are 

the end vertices of E and vi, 2 ≤  i ≤ n −  1 are the 

middle vertices (or m-vertices) of E. Further, we say that 

if a vertex v  of a semigraph G appears only as an end 

vertex then it is an end vertex. If a vertex v is only a 

middle vertex then it is a middle vertex while a vertex 

v is called middle-cum-end ((m, e)-vertex) if it is a middle 

vertex of some edge and end vertex of         some edge. [6] 

If a vertex v is an m-vertex of more than one edge 

of G, say E1, E2, . . . , En, then v is represented  as a small 

regular polygon with 2t corners c1, c2, . . . , cn with the 

convention that the Jordan curve  representing the edge 

Ei,  meets the polygon precisely at ci and ct+i, i + t 

reduced modulo 2t, i ∈ {1, 2, . . . , t} [6]. A vertex v in a 

semigraph G is a pendant vertex if deg v = degev =

1. A pendant edge E is one having a pendant vertex. 

Thus, a pendant edge has atleast one end vertex which is 

pendant vertex [6]. A dendroid is a connected 

semigraph without strong cycles [6]. degv is the number 

of edges having v as an end vertex and degev is the 

number of edges containing v [6]. 

 Let P = (v1, u1, u2, v2, u3, u4,  u5, . . . , un−1, un, vn) be a 

path with v1, v2, . . . , vn as end vertices and  u1, u2, . . . , un as 

middle vertices. For convenience let us denote this path by 

P = (v1, E1, v2, E2, . . . , En, vn), where  E1, E2, . . . , En denote 

the middle vertices between two end vertices. If P =

(v0, E1, v1, . . . , En, vn) and Q = (vn =

w0, F1, w1, F2, . . . , Fm, wm) are two paths in G, then the 

walk obtained by concatating P and Q at vn is denoted by 

P ∘ Q and the path vn, En, . . . , v1, E1, v0 is denoted by P−1 . 
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 Let G be a unicyclic semigraph attached by a dendroid 

with n pendant vertices. Let C be the unique cycle in G. Let 

w be a vertex of degree dege greater than 2 on C. Ti, 1 ≤

i ≤ k are called the branches of G, where k denote the 

number of pendant vertices in the dendroid attached to w. 

 

Definition 1.1. A Wheel in a semigraph is formed by 

connecting an end vertex to all the end vertices of a cycle. 

The Wheel in a semigraph is denoted by Wn, where n is the 

number of end vertices. An end vertex connecting the end 

vertex of a cycle may or may not contain m−vertices. 

 

Remark 1.2. [9] Obviously for any tree T, we have η = ηa =

ηs = ηas = n − 1, where n is the number of pendant 

vertices of T. 

 

Theorem 1.3. [9] Let G be a unicyclic graph with n pendant 

vertices. Let C be the unique cycle in G and let m denote the 

number of vertices of degree greater than 2 on C. Then 

ηas(G) = {

3         if m = 0

n + 2 if m = 1
n + 1 if m = 2
n        if m ≥ 3

 

 

2. Simple Acyclic Graphoidal Covers in Semigraph 

 

Definition 2.1. A graphoidal cover of a semigraph G is a 

collection Ψ of non-trivial paths (which are not necessarily 

open) in G satisfying the following conditions: 

(i) Every path in Ψ has atleast two end vertices.  

(ii) Every end vertex of G is an internal vertex of atmost 

one path in Ψ. 

(iii) Every edge of G is in exactly one path in Ψ. 

 

The set of all graphoidal covers of a semigraph G =

(V, X) is denoted by 𝒢G. The minimum cardinality of a 

graphoidal cover of G is called the graphoidal covering 

number of a semigraph and is denoted by η(G). 

 

Definition 2.2. An acyclic graphoidal cover of a semigraph G 

is a graphoidal cover Ψ of G such that every element of Ψ is 

a path in G. The minimum cardinality of an acyclic 

graphoidal cover of G is called the acyclic graphoidal 

covering number of a semigraph and is denoted by ηa(G). 
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Definition 2.3. A simple graphoidal cover of a semigraph G 

is a graphoidal cover Ψ of G such that any two paths in Ψ 

have atmost one end vertex in common. The minimum 

cardinality of a simple graphoidal cover of G is called the 

simple graphoidal covering number of a semigraph and is 

denoted by ηs(G). 

 

Definition 2.4. A simple acyclic graphoidal cover of a 

semigraph 𝐺 is an acyclic graphoidal cover 𝛹 of 𝐺 such that 

any two paths in 𝛹 have atmost one end vertex in common. 

The minimum cardinality of a simple acyclic graphoidal 

cover of 𝐺 is called the simple acyclic graphoidal covering 

number of a semigraph and is denoted by 𝜂𝑎𝑠(𝐺). 

 

Definition 2.5. An end vertex(or middle vertex or middle-

cum-end vertex) of 𝐺 is said to be in the interior of 𝛹 if it is 

an internal vertex of some path in 𝛹. Any end vertex which 

is not in the interior of 𝛹 is said to be in the exterior of 𝛹. 

 

Note 2.6. For any path 𝑃 in a semigraph, let 𝑡(𝑃) denote 

the number of internal vertices which are end vertices of 𝑃, 

so that 𝑡(𝑃) = |𝐸(𝑃)| − 1. 

 

Theorem 2.7. For any simple acyclic graphoidal cover 𝛹 of 

a semigraph G, let 𝑡𝛹 denote the number of exterior 

vertices which are end vertices of 𝛹. Let t = min𝑡𝛹, where 

the minimum is taken over all simple acyclic graphoidal 

covers 𝛹 of 𝐺. Then 𝜂𝑎𝑠 = 𝑞 − 𝑝 + 𝑡, where 𝑝 is the 

number of end vertices of 𝐺. 

 

Theorem 2.8. Let 𝑊𝑛 be the wheel in a semigraph with 𝑛 

end vertices such that every middle vertex in the cycle is 

attached by the end vertex, then 

𝜂𝑎𝑠(𝑊𝑛) = {
𝑚 + 6         𝑖𝑓 𝑛 = 4
𝑛 +𝑚 + 1 𝑖𝑓 𝑛 ≥ 5

 

where 𝑚 is the number of middle vertices in the cycle. 

v1 G1 v2 
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v5 G4 v4 

 

 

Proof. Let 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛−1 be the end vertices of 𝑊𝑛 and 

𝑢1, 𝑢2, . . . , 𝑢𝑚 be the middle vertices in the cycle of 𝑊𝑛 and 

𝑋(𝑊𝑛) = {(𝑣0, 𝐸𝑖  , 𝑣𝑖); 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {(𝑣0, 𝐹𝑖 , 𝑢𝑖); 1 ≤

𝑖 ≤ 𝑚} ∪ {(𝑣𝑖 , 𝐺𝑖 , 𝑣𝑖+1); 1 ≤ 𝑖 ≤ 𝑛 − 2} ∪

{(𝑣1, 𝐺𝑛−1, 𝑣𝑛−1)}. 

If 𝑛 = 4, then 𝛹 = {(𝑣0, 𝐹𝑖  , 𝑢𝑖); 1 ≤ 𝑖 ≤ 𝑚} ∪

{(𝑣0, 𝐸𝑖  , 𝑣𝑖); 1 ≤ 𝑖 ≤ 3} ∪

{(𝑣1, 𝐺1, 𝑣2), (𝑣2, 𝐺2, 𝑣3), (𝑣3, 𝐺3, 𝑣1)}. Therefore |𝛹| =

𝑚 + 6. 

Now, suppose 𝑛 ≥ 5. Let 𝑃1  =

 (𝑣1, 𝐺1, 𝑣2, 𝐺2, 𝑣3, . . . , 𝐺𝑛−3, 𝑣𝑛−2),  𝑃2 =

{(𝑣𝑛−2, 𝐺𝑛−2, 𝑣𝑛−1), (𝑣𝑛−1, 𝐺𝑛−1, 𝑣1)}, 𝑃3 =

 {(𝑣0, 𝐹𝑖  , 𝑢𝑖); 1 ≤ 𝑖 ≤ 𝑚},  𝑃4  = {(𝑣0, 𝐸𝑖  , 𝑣𝑖); 1 ≤ 𝑖 ≤ 𝑛 −

1} − {(𝑣𝑛−3, 𝐸𝑛−3, 𝑣0), (𝑣0, 𝐸𝑛−1, 𝑣𝑛−1)} and   𝑃5 =

(𝑣𝑛−3, 𝐸𝑛−3, 𝑣0, 𝐸𝑛−1, 𝑣𝑛−1). Therefore 𝛹 =

{𝑃1,  𝑃2, 𝑃3,  𝑃4,  𝑃5}. This implies that |𝛹| = 2 +𝑚 + 𝑛 −

3 + 2 = 𝑛 +𝑚 + 1. Hence, 𝜂𝑎𝑠 ≤ 𝑛 +𝑚 + 1. 

Further, for any simple acyclic graphoidal cover 𝛹 

of 𝑊𝑛, atleast three end vertices on 𝐶 are exterior to 𝛹 so 

that 𝑡 ≥ 3. Hence 𝜂𝑎𝑠(𝑊𝑛) ≥ 𝑞 − 𝑝 + 3 = 𝑛 − 1 +𝑚 +

 𝑛 − 1 − 𝑛 + 3. Thus, 𝜂𝑎𝑠(𝑊𝑛) = 𝑛 +𝑚 + 1.                                                                                                  

■ 

 

Theorem 2.9. Let 𝐺 be a unicyclic semigraph attached by a 

dendroid with 𝑛 pendant vertices. Let 𝐶 be the unique cycle 

G6 
 1  

G2 
2 

 

v6 
 

v3 

  
G5 G3 
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in 𝐺 and let 𝑥 denote the number of end vertices of degree 

𝑑𝑒𝑔𝑒 greater than 2 on 𝐶 and let 𝑦 denote the number of 

𝑚-vertices of degree 𝑑𝑒𝑔𝑒 greater than 1 on 𝐶. Then  

𝜂𝑎𝑠(𝐺) =

{
 
 

 
 
3        𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0

𝑛 + 3 𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 ≥ 1
𝑛 + 2 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 ≥ 0

𝑛 + 1 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 ≥ 0
𝑛        𝑖𝑓 𝑥 ≥ 3 𝑎𝑛𝑑 𝑦 ≥ 0

 

Proof. Let 𝑣1, 𝑣2, . . . , 𝑣𝑘  and 𝑢1, 𝑢2, . . . , 𝑢𝑚 be the end 

vertices and 𝑚-vertices of 𝐶 respectively. Let 𝐸1, 𝐸2, . . . , 𝐸𝑘 

denote the edges with 𝑚-vertices between 

(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑘 , 𝑣1) respectively. 

Case(1). 𝑥 = 0 and 𝑦 = 0. Then 𝐺 = 𝐶 and 𝜂𝑎𝑠(𝐺) = 3. 

Case(2). 𝑥 = 0 and 𝑦 ≥ 1.  

Let 𝑢1, 𝑢2, . . . , 𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑚 be the 𝑚-vertices on 

𝐶 attached by the dendroid with 𝑚1,𝑚2, . . . , 𝑚𝑗 pendant 

vertices respectively so that 𝑢1, 𝑢2, . . . , 𝑢𝑗 becomes the 

(𝑚, 𝑒)-vertex. Therefore 𝑚1 + 𝑚2+. . . + 𝑚𝑗 = 𝑛. 

Let 𝑇1𝑖
′  , 1 ≤ 𝑖 ≤ 𝑚1, 𝑇2𝑖

′  , 1 ≤ 𝑖 ≤ 𝑚2,..., 𝑇𝑗𝑖
′  , 1 ≤

𝑖 ≤ 𝑚𝑗 be the branches of 𝐺 at 𝑢1, 𝑢2, . . . , 𝑢𝑗 respectively. 

Let 𝛹1𝑖
′  , 𝛹2𝑖

′  , . . . , 𝛹𝑗𝑖
′ , 1 ≤ 𝑗 ≤ 𝑚 be a minimum simple 

acyclic graphoidal cover of the branches 𝑇1𝑖
′  , 𝑇2𝑖

′  , . . . , 𝑇𝑗𝑖
′  , 

1 ≤ 𝑗 ≤ 𝑚 respectively. 

Let 𝑄1 = (𝑣1, 𝐸1, 𝑣2, . . . , 𝐸𝑘−2, 𝑣𝑘−1)  

      𝑄2 = (𝑣𝑘−1, 𝐸𝑘−1, 𝑣𝑘) 

      𝑄3 = (𝑣𝑘 , 𝐸𝑘 , 𝑣1) 

Then 𝛹 = {⋃ (𝛹1𝑖
′ ) ∪

𝑚1
𝑖=1 ⋃ (𝛹2𝑖

′ ) ∪ …∪
𝑚2
𝑖=1

⋃ (𝛹𝑗𝑖
′ )

𝑚𝑗

𝑖=1 } ∪ {𝑄1, 𝑄2, 𝑄3} is a simple acyclic graphoidal 

cover 𝛹 of 𝐺. Hence 𝜂𝑎𝑠 ≤ 𝑛 + 3. 

Further for any simple acyclic graphoidal cover 𝛹 of 

𝐺, the n pendant vertices and at least three end vertices on 

𝐶 are exterior to 𝛹, so that 𝑡 ≥ 𝑛 + 3. Hence 𝜂𝑎𝑠 ≥ 𝑛 +3. 

Thus 𝜂𝑎𝑠 = 𝑛 + 3. 

Case(3). 𝑥 = 1 and 𝑦 ≥ 0. 

Let 𝑣1 be the unique end vertex of degree dege 

greater than 2 on 𝐶 and let 𝑣1 be attached by a dendroid 

with 𝑡 pendant vertices. 

Let 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑘 be the branches of 𝐺 at 𝑣1. Let 𝛹𝑖, 

1 ≤ 𝑖 ≤ 𝑘 be a minimum simple acyclic graphoidal cover of 

the branch 𝑇𝑖 . Let 𝑃1 be the path in 𝛹1 having the end 

vertex 𝑣1 as a terminal vertex. 

Also, the 𝑚-vertices on 𝐶 may or may not be 

attached by a dendroid. If the 𝑚-vertices on 𝐶 is attached 

by a dendroid, then the construction is made similar as 
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discussed in case(2). Therefore 𝑡 +𝑚1 + 𝑚2+. . . + 𝑚𝑗 =

𝑛. 

Let 𝑄1 = 𝑃1 ∘ (𝑣1, 𝐸1, 𝑣2)  

      𝑄2 = (𝑣2, 𝐸2, 𝑣3, . . . , 𝐸𝑘−1, 𝑣𝑘)  

      𝑄3 = (𝑣𝑘 , 𝐸𝑘 , 𝑣1)  

Then 𝛹 = (⋃ (𝛹𝑖) −
𝑡
𝑖=1

{𝑃1}){⋃ (𝛹1𝑖
′ ) ∪

𝑚1
𝑖=1 ⋃ (𝛹2𝑖

′ ) ∪ …∪ ⋃ (𝛹𝑗𝑖
′ )

𝑚𝑗

𝑖=1
𝑚2
𝑖=1 } ∪

{𝑄1, 𝑄2, 𝑄3} is a simple acyclic graphoidal cover 𝛹 of 𝐺. 

Hence 𝜂𝑎𝑠 ≤ 𝑛 + 2. 

Further for any simple acyclic graphoidal cover 𝛹 of 

𝐺, the 𝑛 pendant vertices and at least two end vertices on 

𝐶 are exterior to 𝛹, so that 𝑡 ≥ 𝑛 + 2. Hence 𝜂𝑎𝑠 ≥ 𝑛 + 2. 

Thus 𝜂𝑎𝑠 = 𝑛 + 2. 

Case(4). 𝑥 = 2 and 𝑦 ≥ 0. 

Let 𝑣1 and 𝑣𝑟, 1 < 𝑟 ≤ 𝑘 be the end vertices of 

degree 𝑑𝑒𝑔𝑒 greater than 2 on 𝐶. 

Let 𝑆1 and 𝑆2 denote respectively the (𝑣1, 𝑣𝑟)-

section and (𝑣𝑟, 𝑣1)-section of the cycle 𝐶 and let 𝑣𝑠 be an 

internal vertex which is the end vertex of 𝑆1(say). Let 𝑅1 and 

𝑅2 denote the 

(𝑣1, 𝑣𝑠)-section of 𝑆1 and (𝑣𝑠, 𝑣𝑟)-section of 𝑆1 respectively. 

Let 𝑣1 be attached by a dendroid with 𝑏 pendant 

vertices and 𝑣𝑟 be attached by a dendroid with 𝑐 pendant 

vertices. 

Let 𝛹𝑖 and 𝛹𝑗
′, where 1 ≤ 𝑖 ≤ 𝑏 and 1 ≤ 𝑖 ≤ 𝑐 be 

the minimum simple acyclic graphoidal covers of the 

branches 𝑇𝑖 and 𝑇𝑗
′ of 𝐺 at 𝑣1 and 𝑣𝑟 respectively. Let 𝑃1 and 

𝑃1
′ denote respectively the paths in 𝛹1 and 𝛹1

′ having the 

end vertices 𝑣1 and 𝑣𝑟 as terminal vertices.  

Also, the 𝑚-vertices on 𝐶 may or may not be 

attached by a dendroid. If the 𝑚-vertices on 𝐶 is attached 

by a dendroid, then the construction is made similar as 

discussed in case(2). Therefore 𝑏 + 𝑐 +𝑚1 +

 𝑚2+. . . + 𝑚𝑗 = 𝑛.  

Let  𝑄1 = 𝑃1 ∘  𝑅1  

       𝑄2 = 𝑃1
′ ∘ 𝑅2

−1   

       𝑄3 = 𝑆2  

Then 𝛹 = (⋃ (𝛹𝑖) − {𝑃1}
𝑏
𝑖=1 ) ∪ (⋃ (𝛹𝑗

′) −𝑐
𝑖=1

{𝑃1
′}) ∪ {⋃ (𝛹1𝑖

′ ) ∪
𝑚1
𝑖=1 ⋃ (𝛹2𝑖

′ ) ∪ …∪ ⋃ (𝛹𝑗𝑖
′ )

𝑚𝑗

𝑖=1
𝑚2
𝑖=1 } ∪

{𝑄1, 𝑄2, 𝑄3} is a simple acyclic graphoidal cover 𝛹 of 𝐺. 

Hence 𝜂𝑎𝑠 ≤ 𝑛 + 1.  

Further for any simple acyclic graphoidal cover 𝛹 of 

𝐺, the 𝑛 pendant vertices and at least one end vertex on 𝐶 

are exterior to 𝛹, so that 𝑡 ≥ 𝑛 + 1. Hence𝜂𝑎𝑠 ≥ 𝑛 + 1. 
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Thus       𝜂𝑎𝑠 = 𝑛 + 1.  

Case(5). 𝑥 ≥ 3 and 𝑦 ≥ 0. 

Let 𝑣1, 𝑣2, . . . , 𝑣𝑟, 1 ≤ 𝑟 ≤ 𝑘 be the end vertices of 

degree 𝑑𝑒𝑔𝑒 greater than 2 on 𝐶. Let 𝑣1, 𝑣2, . . . , 𝑣𝑟 be 

attached by a dendroid with pendant vertices 𝑛1, 𝑛2, . . . , 𝑛𝑟 

respectively.  

Let 𝛹1𝑖  , 𝛹2𝑖  , . . . , 𝛹𝑟𝑖, 1 ≤ 𝑟 ≤ 𝑘 be the minimum 

simple acyclic graphoidal covers of the branches 𝑇1𝑖, 1 ≤

𝑖 ≤ 𝑛1, 𝑇2𝑖, 1 ≤ 𝑖 ≤ 𝑛2, ..., 𝑇𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛𝑟 of 𝐺 at 

𝑣1, 𝑣2, . . . , 𝑣𝑟 respectively.  

Let 𝑃1, 𝑃2 and 𝑃3 respectively denote the paths in 

𝛹11, 𝛹21, 𝛹31 having 𝑣1, 𝑣2 and 𝑣3 as terminal vertices.  

Also, the 𝑚-vertices on 𝐶 may or may not be 

attached by a dendroid. If the 𝑚-vertices on 𝐶 is attached 

by a dendroid, then the construction is made similar as 

discussed in case(2). Therefore 𝑛1 + 𝑛2, +. . . + 𝑛𝑟 +𝑚1 +

 𝑚2+. . . + 𝑚𝑗 = 𝑛. 

Let  𝑄1 = 𝑃1 ∘ (𝑣1, 𝐸1, 𝑣2)  

       𝑄2 = 𝑃2  ∘ (𝑣2, 𝐸2, 𝑣3)  

       𝑄3 = 𝑃3 ∘ ( 𝑣3, 𝐸3, . . . , 𝐸𝑘 , 𝑣1)  

Then 𝛹 = (⋃ (𝛹1𝑖) − {𝑃1}
𝑛1
𝑖=1 ) ∪ (⋃ (𝛹2𝑖) −

𝑛2
𝑖=1

{𝑃2}) ∪ (⋃ (𝛹3𝑖) − {𝑃3}
𝑛3
𝑖=1 ) ∪ (⋃ (𝛹4𝑖)

𝑛4
𝑖=1 ) ∪ …∪

(⋃ (𝛹𝑟𝑖)
𝑛𝑟
𝑖=1 ) ∪ {⋃ (𝛹1𝑖

′ ) ∪
𝑚1
𝑖=1 ⋃ (𝛹2𝑖

′ ) ∪ …∪
𝑚2
𝑖=1

⋃ (𝛹𝑗𝑖
′ )

𝑚𝑗

𝑖=1 } ∪ {𝑄1, 𝑄2, 𝑄3} is a simple acyclic graphoidal 

cover 𝛹 of 𝐺 such that every vertex of degree 𝑑𝑒𝑔𝑒 greater 

than 1 is interior to 𝛹 and hence 𝜂𝑎𝑠(𝐺) = 𝑛.                                                                

■ 

 

Theorem 2.10. A semigraph 𝐺 has a simple acyclic 

graphoidal cover satisfying the helly property if 𝐺 contains 

no cycle with three end vertices.  

Proof. Let 𝐺 contains cycle with three end vertices, say 𝐶 =

(𝑥, 𝑦, 𝑧, 𝑡). Let 𝛹 be any simple acyclic graphoidal cover of  . 

Then the edges 𝑥𝐸𝑦, 𝑦𝐹𝑧 and 𝑧𝐺𝑡 lie on three different 

paths in 𝛹, say 𝑃1, 𝑃2 and 𝑃3 respectively.  

Clearly, {𝑃1, 𝑃2, 𝑃3} is a pairwise intersecting family 

of paths in 𝛹. If there exists an end vertex 𝑢 which is 

common to the paths 𝑃1, 𝑃2 and 𝑃3 then the end vertices 

𝑢 and 𝑦 are common to both 𝑃1 and 𝑃2, which is a 

contradiction. Hence 𝑉(𝑃1) ∩ 𝑉(𝑃2) ∩ 𝑉(𝑃3) = ∅. Thus, 𝛹 

does not satisfy the helly property.                                                                                          

■ 

 

2 Simple Acyclic Graphoidal Cover in a Zero-Divisor Graph 
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Definition 3.1.[9] A simple acyclic graphoidal cover of a graph 

G is an acyclic graphoidal cover Ψ of G such that any two paths 

in Ψ have atmost one vertex in common. The minimum 

cardinality of a simple acyclic graphoidal cover of G is called the 

simple acyclic graphoidal covering number of a graph and is 

denoted by ηas(G) or simply ηas. 

 

Definition 3.2. Let R be a commutative ring(with 1) and let 

Z(R) be its set of zero-divisors. An element a ∈ R is called a 

zero-divisor if there exists a non-zero element b ∈ R such that         

a. b = 0. Let R be a commutative ring with non-zero identity 

and let Z(R) be its sets of zero-divisors. The zero-divisor graph 

of R denoted by Γ(R), is the (undirected) graph with vertices 

Z(R)∗ = Z(R) − 0, the non-zero zero-divisors of R, and for 

distinct x, y ∈ Z(R)∗ , the vertices x and y are adjacent if and 

only if xy = 0. 

 

Theorem 3.3. For any star Γ(Z2p) with p vertices, then 

ηas(Γ(Z2p)) = p − 2. Further, for the Ga graph of Γ(Z2p), 

ηas(Γ(Z2p)) = p − 1, where p is a prime number and p > 3.  

Proof. Given that Γ(Z2p) is a star with p verices. We know that 

Γ(Z2p) is a tree with p − 1 pendant vertices. By remark 1.2, we 

have ηas(Γ(Z2p)) = p − 2. Using the simple acyclic graphoidal 

cover, we cam construct the Ga graph for the corresponding 

Γ(Z2p). The Ga graph for Γ(Z2p)) is a cycle C3 attached by p −

3 pendant vertices to a verrtex in C3. By case 2 of theorem 1.3, 

we have for the Ga graph of ηas (Γ(Z2p)) = p − 3 + 2 = p −

1.                       ■ 

 

Theorem 3.4. ηas(Γ(Z9) × Pn) = 2n − 2, for all n ≥ 3. 

Proof. We know that Γ(Z9) is isomorphic to P2.  

Let P2 = (x1, x2)  

      Pn = (y1, y2, . . . , yn) 

When n = 3, let uij = (xi, yj ), 1 ≤ i ≤ 2 ; 1 ≤ j ≤ 3. 

Then 

{(u11,  u21, u22, u23, u13), (u11, u12), (u12, u13), (u12, u22)} is a 

minimum simple acyclic graphoidal cover of Γ(Z9) × Pn.  

Let n ≥ 3 and uij = (xi, yj ), 1 ≤ i ≤ 2 ; 1 ≤ j ≤ n, then 

{(u11,  u21, u22, … ,  u2n, u1n), (u11, u12), (u12, u13),… , (u1n−1, u2n), (u12, u22), (u13, u23),…, 

(u1n−1,  u2n−1)} is a set of internally disjoint paths without 

exterior vertices. Thus, ηas(Γ(Z9) × Pn) = 2n − 2.                                                                                                            

■ 
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