Simple Acyclic Graphoidal Covering Number In A Semigraph

W. Jinesha^{1,*}, D. Nidha²

 ¹Research Scholar [Reg.No:20213112092012],
 ²Assistant Professor ^{1,2}Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam - 629 165, Tamil Nadu, India.
 ^{1,2}Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.

*Coressponding author: <u>¹wsjineshaa@gmail.com</u>, <u>²dnmaths@nmcc.ac.in</u>

Abstract

A simple graphoidal cover of a semigraph G is a graphoidal cover Ψ of G such that any two paths in Ψ have atmost one end vertex in common. The minimum cardinality of a simple graphoidal cover of G is called the simple graphoidal covering number of a semigraph and is denoted by $\eta_s(G)$. A simple acyclic graphoidal cover of a semigraph G is an acyclic graphoidal cover Ψ of G such that any two paths in Ψ have atmost one end vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of G is called the simple acyclic graphoidal covering number of a semigraph and is denoted by $\eta_{as}(G)$. In this paper we find the simple acyclic graphoidal covering number for wheel in a semigraph, unicycle in a semigraph and zero-divisor graph.

Keywords: graphoidal cover, semigraph, simple acyclic graphoidal cover.

1 Introduction

Sampathkumar and Acharya initially established the idea of graphoidal covers and graphoidal covering number in [1]. Following that, a variety of topics were introduced and thoroughly in- vestigated, including domination in graphoidally covered graphs, acyclic graphoidal covering number, graphoidal graphs, etc.

A semigraph G is a pair (V, X), where V is a non-empty set whose elements are called vertices of G, and X is a set of n-tuples, called edges of G, of distinct vertices, for various $n \ge 2$, satisfying the following conditions. S.G.-1 Any two edges have atmost one vertex in common.

S.G.-2 Two edges $(u_1, u_2, ..., u_n)$ and $(v_1, v_2, ..., v_m)$ are considered to be equal if and only if

(i) m = n and

(ii) either $u_i=v_i,$ for $1\leq i\leq n,$ or $u_i=v_{n-i+1},$ for $1\leq i\leq n.$ [6]

Let G = (V, X) be a semigraph and $E = (v_1, v_2, ..., v_n)$ be an edge of G. Then v_1 and v_n are the end vertices of E and v_i , $2 \le i \le n - 1$ are the middle vertices (or m-vertices) of E. Further, we say that if a vertex v of a semigraph G appears only as an end vertex then it is an end vertex. If a vertex v is only a middle vertex then it is a middle vertex while a vertex v is called middle-cum-end ((m, e)-vertex) if it is a middle vertex of some edge and end vertex of some edge. [6]

If a vertex v is an m-vertex of more than one edge of G, say E_1, E_2, \ldots, E_n , then v is represented as a small regular polygon with 2t corners c_1, c_2, \ldots, c_n with the convention that the Jordan curverepresenting the edge E_i , meets the polygon precisely at c_i and c_{t+i} , i + treduced modulo 2t, $i \in \{1, 2, \ldots, t\}$ [6]. A vertex v in a semigraph G is a pendant vertex if deg $v = deg_e v =$ 1. A pendant edge E is one having a pendant vertex. Thus, a pendant edge has atleast one end vertex which is pendant vertex [6]. A dendroid is a connected semigraph without strong cycles [6]. degv is the number of edges having v as an end vertex and $deg_e v$ is the number of edges containing v [6].

Let $P = (v_1, u_1, u_2, v_2, u_3, u_4, u_5, \dots, u_{n-1}, u_n, v_n)$ be a path with v_1, v_2, \dots, v_n as end vertices and u_1, u_2, \dots, u_n as middle vertices. For convenience let us denote this path by $P = (v_1, E_1, v_2, E_2, \dots, E_n, v_n)$, where E_1, E_2, \dots, E_n denote the middle vertices between two end vertices. If $P = (v_0, E_1, v_1, \dots, E_n, v_n)$ and $Q = (v_n = w_0, F_1, w_1, F_2, \dots, F_m, w_m)$ are two paths in G, then the walk obtained by concatating P and Q at v_n is denoted by $P \circ Q$ and the path $v_n, E_n, \dots, v_1, E_1, v_0$ is denoted by P^{-1} .

Let G be a unicyclic semigraph attached by a dendroid with n pendant vertices. Let C be the unique cycle in G. Let w be a vertex of degree deg_e greater than 2 on C. T_i , $1 \le i \le k$ are called the branches of G, where k denote the number of pendant vertices in the dendroid attached to w.

Definition 1.1. A Wheel in a semigraph is formed by connecting an end vertex to all the end vertices of a cycle. The Wheel in a semigraph is denoted by W_n , where n is the number of end vertices. An end vertex connecting the end vertex of a cycle may or may not contain m-vertices.

Remark 1.2. [9] Obviously for any tree T, we have $\eta = \eta_a = \eta_s = \eta_{as} = n - 1$, where n is the number of pendant vertices of T.

Theorem 1.3. [9] Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G and let m denote the number of vertices of degree greater than 2 on C. Then

$$\eta_{as}(G) = \begin{cases} 3 & \text{if } m = 0\\ n+2 & \text{if } m = 1\\ n+1 & \text{if } m = 2\\ n & \text{if } m \ge 3 \end{cases}$$

2. Simple Acyclic Graphoidal Covers in Semigraph

Definition 2.1. A graphoidal cover of a semigraph G is a collection Ψ of non-trivial paths (which are not necessarily open) in G satisfying the following conditions:

- (i) Every path in Ψ has atleast two end vertices.
- (ii) Every end vertex of G is an internal vertex of atmost one path in Ψ .
- (iii) Every edge of G is in exactly one path in Ψ .

The set of all graphoidal covers of a semigraph G = (V, X) is denoted by G_G . The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of a semigraph and is denoted by $\eta(G)$.

Definition 2.2. An acyclic graphoidal cover of a semigraph G is a graphoidal cover Ψ of G such that every element of Ψ is a path in G. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of a semigraph and is denoted by $\eta_a(G)$.

Definition 2.3. A simple graphoidal cover of a semigraph G is a graphoidal cover Ψ of G such that any two paths in Ψ have atmost one end vertex in common. The minimum cardinality of a simple graphoidal cover of G is called the simple graphoidal covering number of a semigraph and is denoted by $\eta_s(G)$.

Definition 2.4. A simple acyclic graphoidal cover of a semigraph *G* is an acyclic graphoidal cover Ψ of *G* such that any two paths in Ψ have atmost one end vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of *G* is called the simple acyclic graphoidal covering number of a semigraph and is denoted by $\eta_{as}(G)$.

Definition 2.5. An end vertex(or middle vertex or middlecum-end vertex) of *G* is said to be in the interior of Ψ if it is an internal vertex of some path in Ψ . Any end vertex which is not in the interior of Ψ is said to be in the exterior of Ψ .

Note 2.6. For any path *P* in a semigraph, let t(P) denote the number of internal vertices which are end vertices of *P*, so that t(P) = |E(P)| - 1.

Theorem 2.7. For any simple acyclic graphoidal cover Ψ of a semigraph G, let t_{Ψ} denote the number of exterior vertices which are end vertices of Ψ . Let t = min t_{Ψ} , where the minimum is taken over all simple acyclic graphoidal covers Ψ of G. Then $\eta_{as} = q - p + t$, where p is the number of end vertices of G.

Theorem 2.8. Let W_n be the wheel in a semigraph with n end vertices such that every middle vertex in the cycle is attached by the end vertex, then

$$\eta_{as}(W_n) = \begin{cases} m+6 & \text{if } n=4\\ n+m+1 & \text{if } n \ge 5 \end{cases}$$

where m is the number of middle vertices in the cycle.

Proof. Let $v_0, v_1, v_2, ..., v_{n-1}$ be the end vertices of W_n and $u_1, u_2, ..., u_m$ be the middle vertices in the cycle of W_n and $X(W_n) = \{(v_0, E_i, v_i); 1 \le i \le n-1\} \cup \{(v_0, F_i, u_i); 1 \le i \le m\} \cup \{(v_i, G_i, v_{i+1}); 1 \le i \le n-2\} \cup \{(v_1, G_{n-1}, v_{n-1})\}.$

If n = 4, then $\Psi = \{(v_0, F_i, u_i); 1 \le i \le m\} \cup \{(v_0, E_i, v_i); 1 \le i \le 3\} \cup \{(v_1, G_1, v_2), (v_2, G_2, v_3), (v_3, G_3, v_1)\}$. Therefore $|\Psi| = m + 6$.

Now, suppose $n \geq 5$. Let $P_1 =$ $(v_1, G_1, v_2, G_2, v_3, \dots, G_{n-3}, v_{n-2}), P_2 =$ $\{(v_{n-2}, G_{n-2}, v_{n-1}), (v_{n-1}, G_{n-1}, v_1)\}, P_3 =$ $\{(v_0, F_i, u_i); 1 \le i \le m\}, P_4 = \{(v_0, E_i, v_i); 1 \le i \le n - \}$ 1} - { $(v_{n-3}, E_{n-3}, v_0), (v_0, E_{n-1}, v_{n-1})$ } and $P_{5} =$ $(v_{n-3}, E_{n-3}, v_0, E_{n-1}, v_{n-1}).$ Therefore $\Psi =$ $\{P_1, P_2, P_3, P_4, P_5\}$. This implies that $|\Psi| = 2 + m + n - m$ 3 + 2 = n + m + 1. Hence, $\eta_{as} \le n + m + 1$.

Further, for any simple acyclic graphoidal cover Ψ of W_n , at least three end vertices on C are exterior to Ψ so that $t \ge 3$. Hence $\eta_{as}(W_n) \ge q - p + 3 = n - 1 + m + n - 1 - n + 3$. Thus, $\eta_{as}(W_n) = n + m + 1$.

Theorem 2.9. Let G be a unicyclic semigraph attached by a dendroid with n pendant vertices. Let C be the unique cycle

in G and let x denote the number of end vertices of degree deg_e greater than 2 on C and let y denote the number of m-vertices of degree deg_e greater than 1 on C. Then

$$\eta_{as}(G) = \begin{cases} 3 & \text{if } x = 0 \text{ and } y = 0\\ n+3 \text{ if } x = 0 \text{ and } y \ge 1\\ n+2 \text{ if } x = 1 \text{ and } y \ge 0\\ n+1 \text{ if } x = 2 \text{ and } y \ge 0\\ n & \text{if } x \ge 3 \text{ and } y \ge 0 \end{cases}$$

Proof. Let $v_1, v_2, ..., v_k$ and $u_1, u_2, ..., u_m$ be the end vertices and *m*-vertices of *C* respectively. Let $E_1, E_2, ..., E_k$ denote the edges with *m*-vertices between $(v_1, v_2), (v_2, v_3), ..., (v_k, v_1)$ respectively. **Case(1).** x = 0 and y = 0. Then G = C and $\eta_{as}(G) = 3$.

Case(2). x = 0 and $y \ge 1$.

Let u_1, u_2, \ldots, u_j , $1 \le j \le m$ be the *m*-vertices on C attached by the dendroid with m_1, m_2, \ldots, m_j pendant vertices respectively so that u_1, u_2, \ldots, u_j becomes the (m, e)-vertex. Therefore $m_1 + m_2 + \ldots + m_j = n$.

Let T'_{1_i} , $1 \le i \le m_1$, T'_{2_i} , $1 \le i \le m_2,...,T'_{j_i}$, $1 \le i \le m_j$ be the branches of G at $u_1, u_2, ..., u_j$ respectively. Let $\Psi'_{1_i}, \Psi'_{2_i}, ..., \Psi'_{j_i}, 1 \le j \le m$ be a minimum simple acyclic graphoidal cover of the branches $T'_{1_i}, T'_{2_i}, ..., T'_{j_i}$, $1 \le j \le m$ respectively.

Let
$$Q_1 = (v_1, E_1, v_2, \dots, E_{k-2}, v_{k-1})$$

 $Q_2 = (v_{k-1}, E_{k-1}, v_k)$
 $Q_3 = (v_k, E_k, v_1)$
Then $\Psi = \{\bigcup_{i=1}^{m_1} (\Psi'_{1,i}) \cup \bigcup_{i=1}^{m_k} (\Psi'_{1,i}) \cup \bigcup_{i=1}^{$

Then $\Psi = \left\{ \bigcup_{i=1}^{m_1} (\Psi'_{1_i}) \cup \bigcup_{i=1}^{m_2} (\Psi'_{2_i}) \cup \dots \cup \bigcup_{i=1}^{m_j} (\Psi'_{j_i}) \right\} \cup \{Q_1, Q_2, Q_3\} \text{ is a simple acyclic graphoidal cover } \Psi \text{ of } G. \text{ Hence } \eta_{as} \leq n+3.$

Further for any simple acyclic graphoidal cover Ψ of G, the n pendant vertices and at least three end vertices on C are exterior to Ψ , so that $t \ge n + 3$. Hence $\eta_{as} \ge n + 3$. Thus $\eta_{as} = n + 3$.

Case(3). x = 1 and $y \ge 0$.

Let v_1 be the unique end vertex of degree dege greater than 2 on *C* and let v_1 be attached by a dendroid with *t* pendant vertices.

Let T_i , $1 \le i \le k$ be the branches of G at v_1 . Let Ψ_i , $1 \le i \le k$ be a minimum simple acyclic graphoidal cover of the branch T_i . Let P_1 be the path in Ψ_1 having the end vertex v_1 as a terminal vertex.

Also, the *m*-vertices on C may or may not be attached by a dendroid. If the *m*-vertices on C is attached by a dendroid, then the construction is made similar as

discussed in case(2). Therefore $t + m_1 + m_2 + \ldots + m_j = n$.

Let
$$Q_1 = P_1 \circ (v_1, E_1, v_2)$$

 $Q_2 = (v_2, E_2, v_3, \dots, E_{k-1}, v_k)$
 $Q_3 = (v_k, E_k, v_1)$
Then $\Psi = \left(\bigcup_{i=1}^t (\Psi_i) \right)$
 $\{P_1\}\left(\bigcup_{i=1}^{m_1} (\Psi_{1_i}') \cup \bigcup_{i=1}^{m_2} (\Psi_{2_i}') \cup \dots \cup \bigcup_{i=1}^{m_j} (\Psi_{j_i}')\right\} \cup$

 $\{Q_1, Q_2, Q_3\}$ is a simple acyclic graphoidal cover Ψ of G. Hence $\eta_{as} \leq n+2$.

Further for any simple acyclic graphoidal cover Ψ of G, the n pendant vertices and at least two end vertices on C are exterior to Ψ , so that $t \ge n + 2$. Hence $\eta_{as} \ge n + 2$. Thus $\eta_{as} = n + 2$.

Case(4). x = 2 and $y \ge 0$.

Let v_1 and v_r , $1 < r \le k$ be the end vertices of degree deg_e greater than 2 on *C*.

Let S_1 and S_2 denote respectively the (v_1, v_r) section and (v_r, v_1) -section of the cycle C and let v_s be an internal vertex which is the end vertex of S_1 (say). Let R_1 and R_2 denote the

 (v_1, v_s) -section of S_1 and (v_s, v_r) -section of S_1 respectively.

Let v_1 be attached by a dendroid with b pendant vertices and v_r be attached by a dendroid with c pendant vertices.

Let Ψ_i and Ψ'_j , where $1 \le i \le b$ and $1 \le i \le c$ be the minimum simple acyclic graphoidal covers of the branches T_i and T'_j of G at v_1 and v_r respectively. Let P_1 and P'_1 denote respectively the paths in Ψ_1 and Ψ'_1 having the end vertices v_1 and v_r as terminal vertices.

Also, the *m*-vertices on *C* may or may not be attached by a dendroid. If the *m*-vertices on *C* is attached by a dendroid, then the construction is made similar as discussed in case(2). Therefore $b + c + m_1 + m_2 + \ldots + m_i = n$.

Let
$$Q_1 = P_1 \circ R_1$$

 $Q_2 = P'_1 \circ R_2^{-1}$
 $Q_3 = S_2$

Then $\Psi = \left(\bigcup_{i=1}^{b}(\Psi_{i}) - \{P_{1}\}\right) \cup \left(\bigcup_{i=1}^{c}(\Psi_{j}') - \{P_{1}'\}\right) \cup \left(\bigcup_{i=1}^{m_{1}}(\Psi_{1i}') \cup \bigcup_{i=1}^{m_{2}}(\Psi_{2i}') \cup \dots \cup \bigcup_{i=1}^{m_{j}}(\Psi_{ji}')\right) \cup$

 $\{Q_1,Q_2,Q_3\}$ is a simple acyclic graphoidal cover Ψ of G. Hence $\eta_{as} \leq n+1.$

Further for any simple acyclic graphoidal cover Ψ of G, the n pendant vertices and at least one end vertex on C are exterior to Ψ , so that $t \ge n + 1$. Hence $\eta_{as} \ge n + 1$.

Thus $\eta_{as} = n + 1$. Case(5). $x \ge 3$ and $y \ge 0$.

Let v_1, v_2, \ldots, v_r , $1 \le r \le k$ be the end vertices of degree deg_e greater than 2 on *C*. Let v_1, v_2, \ldots, v_r be attached by a dendroid with pendant vertices n_1, n_2, \ldots, n_r respectively.

Let $\Psi_{1_i}, \Psi_{2_i}, \ldots, \Psi_{r_i}, 1 \leq r \leq k$ be the minimum simple acyclic graphoidal covers of the branches $T_{1_i}, 1 \leq i \leq n_1, T_{2_i}, 1 \leq i \leq n_2, \ldots, T_{r_i}, 1 \leq i \leq n_r$ of G at v_1, v_2, \ldots, v_r respectively.

Let P_1 , P_2 and P_3 respectively denote the paths in Ψ_{1_1} , Ψ_{2_1} , Ψ_{3_1} having v_1 , v_2 and v_3 as terminal vertices.

Also, the *m*-vertices on *C* may or may not be attached by a dendroid. If the *m*-vertices on *C* is attached by a dendroid, then the construction is made similar as discussed in case(2). Therefore $n_1 + n_2, +... + n_r + m_1 + m_2 +... + m_i = n$.

Let $Q_1 = P_1 \circ (v_1, E_1, v_2)$ $Q_2 = P_2 \circ (v_2, E_2, v_3)$ $Q_3 = P_3 \circ (v_3, E_3, \dots, E_k, v_1)$ Then $\Psi = \left(\bigcup_{i=1}^{n_1} (\Psi_{1_i}) - \{P_1\}\right) \cup \left(\bigcup_{i=1}^{n_2} (\Psi_{2_i}) - \{P_2\}\right) \cup \left(\bigcup_{i=1}^{n_3} (\Psi_{3_i}) - \{P_3\}\right) \cup \left(\bigcup_{i=1}^{n_4} (\Psi_{4_i})\right) \cup \dots \cup \left(\bigcup_{i=1}^{n_r} (\Psi_{r_i})\right) \cup \left\{\bigcup_{i=1}^{m_1} (\Psi_{1_i}') \cup \bigcup_{i=1}^{m_2} (\Psi_{2_i}') \cup \dots \cup \right\}$

 $\bigcup_{i=1}^{m_j} (\Psi'_{j_i}) \} \cup \{Q_1, Q_2, Q_3\} \text{ is a simple acyclic graphoidal cover } \Psi \text{ of } G \text{ such that every vertex of degree } deg_e \text{ greater than } 1 \text{ is interior to } \Psi \text{ and hence } \eta_{as}(G) = n.$

Theorem 2.10. A semigraph G has a simple acyclic graphoidal cover satisfying the helly property if G contains no cycle with three end vertices.

Proof. Let *G* contains cycle with three end vertices, say C = (x, y, z, t). Let Ψ be any simple acyclic graphoidal cover of . Then the edges xEy, yFz and zGt lie on three different paths in Ψ , say P_1 , P_2 and P_3 respectively.

Clearly, $\{P_1, P_2, P_3\}$ is a pairwise intersecting family of paths in Ψ . If there exists an end vertex u which is common to the paths P_1 , P_2 and P_3 then the end vertices u and y are common to both P_1 and P_2 , which is a contradiction. Hence $V(P_1) \cap V(P_2) \cap V(P_3) = \emptyset$. Thus, Ψ does not satisfy the helly property.

2 Simple Acyclic Graphoidal Cover in a Zero-Divisor Graph

Definition 3.1.[9] A simple acyclic graphoidal cover of a graph G is an acyclic graphoidal cover Ψ of G such that any two paths in Ψ have atmost one vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of G is called the simple acyclic graphoidal covering number of a graph and is denoted by $\eta_{as}(G)$ or simply η_{as} .

Definition 3.2. Let R be a commutative ring(with 1) and let Z(R) be its set of zero-divisors. An element $a \in R$ is called a zero-divisor if there exists a non-zero element $b \in R$ such that a. b = 0. Let R be a commutative ring with non-zero identity and let Z(R) be its sets of zero-divisors. The zero-divisor graph of R denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^* = Z(R) - 0$, the non-zero zero-divisors of R, and for distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy = 0.

Theorem 3.3. For any star $\Gamma(Z_{2p})$ with p vertices, then $\eta_{as}(\Gamma(Z_{2p})) = p - 2$. Further, for the G_a graph of $\Gamma(Z_{2p})$, $\eta_{as}(\Gamma(Z_{2p})) = p - 1$, where p is a prime number and p > 3. **Proof.** Given that $\Gamma(Z_{2p})$ is a star with p verices. We know that $\Gamma(Z_{2p})$ is a tree with p - 1 pendant vertices. By remark 1.2, we have $\eta_{as}(\Gamma(Z_{2p})) = p - 2$. Using the simple acyclic graphoidal cover, we cam construct the G_a graph for the corresponding $\Gamma(Z_{2p})$. The G_a graph for $\Gamma(Z_{2p})$ is a cycle C_3 attached by p - 3 pendant vertices to a verrtex in C_3 . By case 2 of theorem 1.3, we have for the G_a graph of $\eta_{as}(\Gamma(Z_{2p})) = p - 3 + 2 = p - 1$.

 $\begin{array}{l} \mbox{Theorem 3.4. } \eta_{as}(\Gamma(Z_9)\times P_n)=2n-2, \mbox{ for all } n\geq 3. \\ \mbox{Proof. We know that } \Gamma(Z_9) \mbox{ is isomorphic to } P_2. \\ \mbox{ Let } P_2=(x_1,x_2) \\ P_n=(y_1,y_2,\ldots,y_n) \\ \mbox{ When } n=3, \mbox{ let } u_{ij}=(x_i,y_j\), \ 1\leq i\leq 2\ ; \ 1\leq j\leq 3. \\ \\ \mbox{Then} \\ \{(u_{11},\,u_{21},u_{22},u_{23},u_{13}),(u_{11},u_{12}),(u_{12},u_{13}),(u_{12},u_{22})\} \mbox{ is a minimum simple acyclic graphoidal cover of } \Gamma(Z_9)\times P_n. \\ \mbox{ Let } n\geq 3 \ \mbox{ and } u_{ij}=(x_i,y_j\), \ 1\leq i\leq 2\ ; \ 1\leq j\leq n, \ \mbox{ then} \\ \{(u_{11},\,u_{21},u_{22},\ldots,\,u_{2n},u_{1n}),(u_{11},u_{12}),(u_{12},u_{13}),\ldots,(u_{1n-1},u_{2n}),(u_{12},u_{22}),(u_{13},u_{23}),\ldots,(u_{1n-1},u_{2n-1})\} \ \mbox{ is a set of internally disjoint paths without exterior vertices. Thus, } \eta_{as}(\Gamma(Z_9)\times P_n)=2n-2. \\ \mbox{ \blacksquare } \end{array}$

References

- Acharya, B. Devadas, and E. Sampathkumar. "Graphoidal covers and graphoidal covering number of a graph." Indian J. pure appl. Math 18.10 (1987): 882-890.
- [2] Arumugam S, B. Devadas Acharya and E. Sampathkumar, "Graphoidal Covers of a Graph : A Creative Review", Proceedings of the National Workshop on Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, February 21-27 1996, (1996), 1-28.
- [3] Arumugam S and J. Suresh Suseela, "Acyclic graphoidal covers and path partitions in a graph." Discrete Mathematics 190.1-3 (1998): 67-77.
- [4] Arumugam S and I. Sahul Hamid, "Simple graphoidal covers in a graph." Journal Of Combinatorial Mathematics And Combinatorial Computing 64 (2008): 79.
- [5] Pakkiam, C and S. Arumugam, "On the graphoidal covering number of a graph," Indian J. pure appl. Math 20.4 (1989): 330-333.
- [6] E. Sampathkumar, Semigraphs and their applications, Academy of discrete mathematics and applications.
- [7] Bobin George, Rajesh K. Thumbakara, and Jinta Jose, "Soft Semigraphs and Some of Their Operations." New Mathematics and Natural Computation (2022): 1-17.
- [8] Solairaju A and G. Rajasekar, "An algorithm to Cyclic Path Covering Number", Electronic Notes in Discrete Mathematics, 33 (2009): 21-28.
- [9] S. Arumugam and I. Sahul Hamid, "Simple Acyclic Graphoidal Covers in a Graph", Australian Journal of Combinatorics, Volume 37(2007), Pages 243-255.
- [10] David F. Anderson and Philip S. Livingston, The zero-divisor graph of a commutative ring, Journal of algebra, 217,434–447, 1999, Elsevier.