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Abstract

A simple graphoidal cover of a semigraph G is a graphoidal
cover W of G such that any two paths in ¥ have atmost one
end vertex in common. The minimum cardinality of a simple
graphoidal cover of G is called the simple graphoidal
covering number of a semigraph and is denoted by 1n5(G). A
simple acyclic graphoidal cover of a semigraph G is an acyclic
graphoidal cover W of G such that any two paths in ¥ have
atmost one end vertex in common. The minimum cardinality
of a simple acyclic graphoidal cover of G is called the simple
acyclic graphoidal covering number of a semigraph and is
denoted by 1,5(G). In this paper we find the simple acyclic
graphoidal covering number for wheel in a semigraph,
unicycle in a semigraph and zero-divisor graph.

Keywords: graphoidal cover, semigraph, simple acyclic
graphoidal cover.

1 Introduction

Sampathkumar and Acharya initially established the idea of
graphoidal covers and graphoidal covering number in [1].
Following that, a variety of topics were introduced and
thoroughly in- vestigated, including domination in
graphoidally covered graphs, acyclic graphoidal covering
number, graphoidal graphs, etc.

A semigraph G is a pair (V,X), where V is a non-empty
set whose elements are called vertices of G, and X is a
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set of n-tuples, called edges of G, of distinct vertices, for
various n = 2, satisfying the following conditions.
S.G.-1 Any two edges have atmost one vertex in
common.

S.G.-2 Two edges (uq,Uy,...,uy) and (v, Vy, ..., Vin)
are considered to be equal if and only if

(i) m =n and

(i) either u; = v, for 1 <i<n, or u; = v_j4q, for
1<i<n. [6]

Let G=(V,X) be a semigraph and E =
(v4,Vy,...,v,) be an edge of G. Then v; and v,are
the end vertices of E and v;, 2< i<n — 1 are the
middle vertices (or m-vertices) of E. Further, we say that
if a vertex v of a semigraph G appears only as an end
vertex then it is an end vertex. If a vertex v is only a
middle vertex then it is a middle vertex while a vertex
vis called middle-cum-end ((m, e)-vertex) if it is a middle
vertex of some edge and end vertex ofsome edge. [6]

If a vertex v is an m-vertex of more than one edge
of G, say E{,E,,...,E,, then v is represented as a small
regular polygon with 2t corners c4,Cy,...,c, with the
convention that the Jordan curverepresenting the edge
E;, meets the polygon precisely at ¢; and cy, i+t
reduced modulo 2t, i € {1,2,...,t} [6]. Avertexvina
semigraph G is a pendant vertex if deg v = deg.v =
1. A pendant edge E is one having a pendant vertex.
Thus, a pendant edge has atleast one end vertex which is
pendant vertex [6]. A dendroid is a connected
semigraph without strong cycles [6]. degv is the number
of edges having v as an end vertex and deg.vV is the
number of edges containing v [6].

Let P = (vq, Uy, Uy, Vy, U3, Uy, Us,...,Uy_q,Uy, V,) be a
path with vy, v,,...,v, as end vertices and u,,u,,...,u, as
middle vertices. For convenience let us denote this path by
P = (v1,E1, vy, Ey, ..., Ey, V), where Ef,E,, ..., E, denote
the middle vertices between two end vertices. If P =
vo, EL,ve,--, En,vp) and Q=(vy =
wo, F1,wq,Fy, ..., Fn, W) are two paths in G, then the
walk obtained by concatating P and Q at v,, is denoted by
P o Q and the path v, E,, ..., vq, E{, v, is denoted by p-1.
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Let G be a unicyclic semigraph attached by a dendroid
with n pendant vertices. Let C be the unique cycle in G. Let
w be a vertex of degree deg, greaterthan 2on C. T}, 1 <
i <k are called the branches of G, where k denote the
number of pendant vertices in the dendroid attached to w.

Definition 1.1. A Wheel in a semigraph is formed by
connecting an end vertex to all the end vertices of a cycle.
The Wheel in a semigraph is denoted by W,,, where n is the
number of end vertices. An end vertex connecting the end
vertex of a cycle may or may not contain m-vertices.

Remark 1.2. [9] Obviously for any tree T, we haven =1, =
Ng =Tas =N —1, where n is the number of pendant
vertices of T.

Theorem 1.3. [9] Let G be a unicyclic graph with n pendant
vertices. Let C be the unique cycle in G and let m denote the
number of vertices of degree greater than 2 on C. Then

3 ifm=0
_Jn+2ifm=1
Mas(® =90 4 Tifm = 2

n ifm =3
2. Simple Acyclic Graphoidal Covers in Semigraph

Definition 2.1. A graphoidal cover of a semigraph G is a
collection W of non-trivial paths (which are not necessarily
open) in G satisfying the following conditions:

(i) Every path in W has atleast two end vertices.
(ii) Every end vertex of G is an internal vertex of atmost
one path in W.

(iii) Every edge of G is in exactly one path in W.

The set of all graphoidal covers of a semigraph G =
(V,X) is denoted by Gg. The minimum cardinality of a
graphoidal cover of G is called the graphoidal covering
number of a semigraph and is denoted by 1n(G).

Definition 2.2. An acyclic graphoidal cover of a semigraph G
is a graphoidal cover W of G such that every element of ¥ is
a path in G. The minimum cardinality of an acyclic
graphoidal cover of G is called the acyclic graphoidal
covering number of a semigraph and is denoted by 1, (G).
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Definition 2.3. A simple graphoidal cover of a semigraph G
is a graphoidal cover W of G such that any two paths in ¥
have atmost one end vertex in common. The minimum
cardinality of a simple graphoidal cover of G is called the
simple graphoidal covering number of a semigraph and is
denoted by n5(G).

Definition 2.4. A simple acyclic graphoidal cover of a
semigraph G is an acyclic graphoidal cover ¥ of G such that
any two pathsin ¥ have atmost one end vertex in common.
The minimum cardinality of a simple acyclic graphoidal
cover of G is called the simple acyclic graphoidal covering
number of a semigraph and is denoted by 1,,(G).

Definition 2.5. An end vertex(or middle vertex or middle-
cum-end vertex) of G is said to be in the interior of ¥ if it is
an internal vertex of some path in ¥. Any end vertex which
is not in the interior of ¥ is said to be in the exterior of ¥.

Note 2.6. For any path P in a semigraph, let t(P) denote
the number of internal vertices which are end vertices of P,
so that t(P) = |E(P)| — 1.

Theorem 2.7. For any simple acyclic graphoidal cover ¥ of
a semigraph G, let ty denote the number of exterior
vertices which are end vertices of ¥. Let t = minty, where
the minimum is taken over all simple acyclic graphoidal
covers ¥ of G. Then 1, =q—p +t, where p is the
number of end vertices of G.

Theorem 2.8. Let W, be the wheel in a semigraph with n
end vertices such that every middle vertex in the cycle is
attached by the end vertex, then
m+6 ifn=4%
Nas (W) _{n+m+1ifn2 5
where m is the number of middle vertices in the cycle.

vVl G, V2
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V5 Gy v4

Proof. Let vy, v, V5, ..., V,_1 be the end vertices of W,, and
Uq, Uy, ..., Uy be the middle vertices in the cycle of W, and
X(Wp) ={(wg,E;,v;); 1 <i<n—1}U{(vy, F;,u;); 1 <
i<m}u{(v;,G;,vi;1)1<i<n-2}U
{(v1, Gr1,Vn-1)}.

If n=4, then ¥ ={(vy,F;,u;);1<i<m}u
{(vo,E; ,v));1<i<3}U
{(vy, G1,v3), (v3,G5,v3), (v3,G3,v1)}.  Therefore |¥|
m+ 6.

Now, suppose n > 5. Let P, =

(v1,G1,V2,G2,V3,..., Gz, Vp_2), P, =
{(vn—2,Gn_2,vn-1), Wn_1,Gp_1,v1)}, P3 =

{(vo,F; ,u;);1<i<m}, P, ={(vp,E;,v;);1<i<n-—
1} = {(vn-3, En-3,v0), (Vo, En—1,vp-1)}  and Ps =
(Wn—3,En_3,v9, En_1,vn_1)- Therefore Y=
{P1, P;,P3, P,, Ps}. This implies that |[¥|=2+m+n —
3+2=n+m+ 1l.Hence,ngs <n+m+1.

Further, for any simple acyclic graphoidal cover ¥
of W, atleast three end vertices on C are exterior to ¥ so
that t = 3. Hence n,s(Wp)=2gq—p+3=n—-1+m+
n—1-—-n+3. Thus, Nas(Wp) =n+m+ 1.
[ ]

Theorem 2.9. Let G be a unicyclic semigraph attached by a
dendroid with n pendant vertices. Let C be the unique cycle
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in G and let x denote the number of end vertices of degree
deg, greater than 2 on C and let y denote the number of
m-vertices of degree deg, greater than 1 on C. Then
3 ifx=0andy =0
(n+3ifx=0andy >1
Nas(G) =<{n+2ifx=1andy =0
n+lifx=2andy =0
n ifx=3andy >0
Proof. Let vy, v,,...,v; and uq,uU,,...,u, be the end
vertices and m-vertices of C respectively. Let E4, E5,..., E,
denote the edges with m-vertices between
(v1,v3), (v3,v3),..., (v, v1) respectively.
Case(1). x =0andy = 0.Then G = C and n4,(G) = 3.
Case(2).x =0andy = 1.

Let uy, uy,...,u;, 1 < j < m be the m-vertices on
C attached by the dendroid with my,my,...,m; pendant
vertices respectively so that uy,u,,. coUj becomes the
(m, e)-vertex. Therefore m; + m,+...+m; = n.

Let Tl’l_, 1<i<m,, Tz’i, 1Si£m2,...,Tj’i, 1<
i<m be the branches of G at Ug, Uy, ..., U respectively.
Let Wi , %5, ,...,‘I’j’i,
acyclic graphoidal cover of the branches T1'i T3, Tj’l ,

1<j<m be a minimum simple

1 < j < mrespectively.
Let Q; = (v, EL, o, B2, V1)
Q2 = (Vik-1, Ex—1, k)
Q3 = (W, Ex, v1)

Then Y ={U¥)VUZA(¥s) U ..U
U:Zjl(’l’}i)} U {Q1,0Q,,Q3} is a simple acyclic graphoidal
cover ¥ of G. Hence 1y, < m + 3.

Further for any simple acyclic graphoidal cover ¥ of
G, the n pendant vertices and at least three end vertices on
C are exterior to ¥, so that t = n + 3. Hence s = n +3.
Thus s = n + 3.

Case(3).x =1andy = 0.

Let v; be the unique end vertex of degree dege
greater than 2 on C and let v; be attached by a dendroid
with t pendant vertices.

LetT;, 1 < i < k be the branches of G at v,. Let ¥,
1 < i < k be a minimum simple acyclic graphoidal cover of
the branch T; . Let P; be the path in ¥; having the end
vertex v; as a terminal vertex.

Also, the m-vertices on C may or may not be
attached by a dendroid. If the m-vertices on C is attached
by a dendroid, then the construction is made similar as
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discussed in case(2). Therefore t + my + my+...+ m; =
n.
Let Qy = Py o (vy, Ey,v3)
Q2 = (2, Ez,v3,..., Ej—q,vg)
Qs = (W, Ex, v1)

Then ¥ = (UL,(¥) —
PUTAP) VU (5) U .0 U(¥)}
{01,Q,Q3} is a simple acyclic graphoidal cover ¥ of G.
Henceng,s < n+ 2.

Further for any simple acyclic graphoidal cover ¥ of
G, the n pendant vertices and at least two end vertices on
C are exteriorto ¥, so thatt > n + 2. Hence n s = n + 2.
Thusngs = n + 2.

Case(4).x =2andy = 0.

Let v; and v,, 1 <r < k be the end vertices of
degree deg, greater than 2 on C.

Let S; and S, denote respectively the (vq,v;)-
section and (v, v1)-section of the cycle C and let vg be an
internal vertex which is the end vertex of S; (say). Let R, and
R, denote the
(v, vg)-section of §; and (v, v;-)-section of §; respectively.

Let v; be attached by a dendroid with b pendant
vertices and v, be attached by a dendroid with ¢ pendant
vertices.

Let ¥; and‘l’j',where1Si£band1£i§cbe
the minimum simple acyclic graphoidal covers of the
branches T; and Tj’ of G at v; and v, respectively. Let P; and
P; denote respectively the paths in ¥; and ¥; having the
end vertices v; and v, as terminal vertices.

Also, the m-vertices on C may or may not be
attached by a dendroid. If the m-vertices on C is attached
by a dendroid, then the construction is made similar as
discussed in  case(2). Therefore b+4+c+m;+
my+...+m; =n.

Let Q1 =Pyo Ry

Q=P Rz_1
Q3 =S5

Then VY= (U?=1(qji) —{P}u (Uic=1(qjj’) -
P VUL W) VUZ(W3) U v U (W)} U
{01,Q2,Q3} is a simple acyclic graphoidal cover ¥ of G.
Hencen,s <n+ 1.

Further for any simple acyclic graphoidal cover ¥ of
G, the n pendant vertices and at least one end vertex on C

are exterior to ¥, so that t > n + 1. Hencen,s =n + 1.
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Thus 7 =n+1.
Case(5).x =3 andy = 0.

Let v, vy,..., v, 1 <1 < k be the end vertices of
degree deg, greater than 2 on C. Let vq,vy,...,v, be
attached by a dendroid with pendant vertices nq, ny,...,n,
respectively.

Let ¥,,,%¥;,,...%, 1<r=< k be the minimum
simple acyclic graphoidal covers of the branches Ty, 1 <
isng, Ty, 1<i<ny .., T, 1<i<n, of G at
V1, Vy,..., Uy respectively.

Let P;, P, and P; respectively denote the paths in
¥Y1,, ¥2,, ¥3, having vy, v, and v as terminal vertices.

Also, the m-vertices on C may or may not be
attached by a dendroid. If the m-vertices on C is attached
by a dendroid, then the construction is made similar as
discussed in case(2). Therefore ny + n,, +...+n, + my +
my+...+m; =n.

Let Qy = Py o (vy, Ey,v3)

Q2 = Py o (v3,Ep,v3)
Q3 = P30 (v3,E3,..., Ex, v1)

Then ¥ = (Ui2,(¥1,) — (P} U (UiZ4(¥2,) -
P}) U (U, (¥5,) = (P} U (UZy(#a)) U U
(U, (#,)) U (U () U UT(¥3) U .0
U:Zjl('l’j'i)} U{Q4,0Q,,0Q3} is a simple acyclic graphoidal
cover ¥ of G such that every vertex of degree deg, greater
than 1 is interior to ¥ and hence 14(G) =n.
[ ]

Theorem 2.10. A semigraph G has a simple acyclic
graphoidal cover satisfying the helly property if G contains
no cycle with three end vertices.

Proof. Let G contains cycle with three end vertices, say C =
(x,y,2z,t). Let ¥ be any simple acyclic graphoidal cover of .
Then the edges xEy, yFz and zGt lie on three different
paths in ¥, say P;, P, and P; respectively.

Clearly, {Py, P,, P;} is a pairwise intersecting family
of paths in ¥. If there exists an end vertex u which is
common to the paths P;, P, and P; then the end vertices
u and y are common to both P; and P,, which is a
contradiction. Hence V(P;) NV (P,) NV (P;) = @. Thus, ¥
does not satisfy the helly property.

[ ]

2 Simple Acyclic Graphoidal Cover in a Zero-Divisor Graph
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Definition 3.1.[9] A simple acyclic graphoidal cover of a graph
G is an acyclic graphoidal cover W of G such that any two paths
in W have atmost one vertex in common. The minimum
cardinality of a simple acyclic graphoidal cover of G is called the
simple acyclic graphoidal covering number of a graph and is
denoted by 1,5(G) or simply 1,5.

Definition 3.2. Let R be a commutative ring(with 1) and let
Z(R) be its set of zero-divisors. An element a € R is called a
zero-divisor if there exists a non-zero element b € R such that
a.b = 0. Let R be a commutative ring with non-zero identity
and let Z(R) be its sets of zero-divisors. The zero-divisor graph
of R denoted by I'(R), is the (undirected) graph with vertices
Z(R)* = Z(R) — 0, the non-zero zero-divisors of R, and for
distinct x,y € Z(R)" , the vertices x and y are adjacent if and
only if xy = 0.

Theorem 3.3. For any star I'(Z;,) with p vertices, then
Nas(T'(Z2p)) = p — 2. Further, for the G, graph of I'(Z;p),
Nas(['(Z2p)) = p — 1, where p is a prime number and p > 3.

Proof. Given that I'(Z;p,) is a star with p verices. We know that
['(Z,p) is atree with p — 1 pendant vertices. By remark 1.2, we
have N,5(T'(Z2p)) = p — 2. Using the simple acyclic graphoidal
cover, we cam construct the G, graph for the corresponding
['(Z3p)- The G, graph for I'(Z,p,)) is a cycle C; attached by p —
3 pendant vertices to a verrtex in C5. By case 2 of theorem 1.3,

we have for the G, graph of 1 (F(Zzp)) =p—-3+2=p-—
1. ]

Theorem 3.4.1,5(I'(Zg) X P,) = 2n — 2, foralln > 3.
Proof. We know that I'(Zy) is isomorphic to P,.

Let P, = (Xq,X3)

Pn = (Y1' Y2,.00s YH)

When n =3, let u;; = (x3,y5), 1 <i<2;1<j<3.
Then
{(u11, up1,uz2, U3, u53), (Ug1, Ug2), (W12, Us3), (U12, Uz2)} is @
minimum simple acyclic graphoidal cover of ['(Zg) X P,.

Let n>3 and uij=(xi,yj), 1<i<2 ; 1<j<n, then
{(u11, uz1, U2z, -, Uzn, Usn), (U11,U12), (U12,Ug3), o) (Uin-1, Uzn), (W12, U22), (U3, Uz3), -ony

(U1p—1, Uap_1)} is a set of internally disjoint paths without
exterior  vertices.  Thus, mas(I'(Zg) X P,) = 2n— 2.
]
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