STRONGLY AND PERFECTLY $I\alpha_G^{\Lambda}$ -CONTINUOUS FUNCTION IN INTUITIONISTIC TOPOLOGICAL SPACES

Dr. J. Arul Jesti¹ & K. Heartlin²

 ¹Research Scholar, Reg No:19212212092006, PG and Research Department of Mathematics
²PG and Research Department of Mathematics, St.Mary's College(Autonomous), Thoothukudi.
¹heartlingladson@gmail.com
²aruljesti@gmail.com

ABSTRACT

The concept of intuitionistic sets and intuitionistic points in topological spaces was first introduced by Coker. The purpose of this paper is to introduce a mapping of strongly $I\alpha_g^{\Lambda}$ -continuous and perfectly $I\alpha_g^{\Lambda}$ -continuous function in intuitionistic topological spaces and analyze its relations with other existing intuitionistic functions.

Keywords: strongly $I\alpha_g^{\Lambda}\mbox{-}continuous$ and perfectly $I\alpha_g^{\Lambda}\mbox{-}continuous.$

INTRODUCTION

Coker [1] introduced the concept of intuitionistic sets and intuitionistic points in 1996. [3] J.G.Lee, P.K.Lim, J.H.Kim, K.Hur introduced intuitionistic continuous, closed and open mappings in 2017. [4] J.Arul Jesti and K.Heartlin introduced the concept of alpha^generalized closed sets in intuitionistic topological spaces and discuss some properties related to $I\alpha_g^{\Lambda}$ -closed set in intuitionistic topological spaces. [5] J.Arul Jesti and K.Heartlin On $I\alpha_g^{\Lambda}$ -continuous function In intuitionistic topological spaces. The purpose of this paper is to develop some $I\alpha_g^{\Lambda}$ -continuous function in intuitionistic topological spaces and also study its relations with some of existing intuitionistic relations.

2 PRELIMINARIES

Definition 2.1 [1]: Let \mathcal{H} be a non-empty set. An intuitionistic set (IS for short) A is an object having the form A=< \mathcal{H} , A₁, A₂> Where A₁, A₂ are subsets of \mathcal{H} satisfying A₁ \cap A₂ = φ . The set A₁ is called the set of members of A, while A₂ is called set of non members of

Α.

Definition 2.2 [1]: Let \mathcal{H} be a non-empty set and A and B are intuitionistic set in the form $A = \langle \mathcal{H}, A_1, A_2 \rangle$, $B = \langle \mathcal{H}, B_1, B_2 \rangle$ respectively. Then

- a) $A \subseteq B \text{ iff } A_1 \subseteq B_1 \text{ and } A_2 \supseteq B_2$
- b) $A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$
- c) $A^{C} = \langle \mathcal{H}, A_{2}, A_{1} \rangle$
- d) $A B = A \cap B^C$
- e) $\phi = \langle \mathcal{H}, \phi, \mathcal{H} \rangle, \mathcal{H} = \langle \mathcal{H}, \mathcal{H}, \phi \rangle$
- f) $A \cup B = \langle \mathcal{H}, A_1 \cup B_1, A_2 \cap B_2 \rangle$
- g) $A \cap B = \langle \mathcal{H}, A_1 \cap B_1, A_2 \cup B_2 \rangle$.

Definition 2.3 [3]: A subset A of $(\mathcal{H}, I\tau)$ is called an **intuitionistic alpha** ^ **generalized closed** (briefly $I\alpha_g^{\wedge}$ -closed) if Igcl(A) $\subseteq U$, whenever A $\subseteq U$ and U is I α -open in \mathcal{H} . We denote the family of all $I\alpha_g^{\wedge}$ -closed sets in space \mathcal{H} by $I\alpha_g^{\wedge}C(\mathcal{H})$.

Definition 2.4 [6]: Let (\mathcal{H}, τ_1) and (Y, τ_2) be two ITS's and f: $(\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ be a function. Then f is said to be intuitionistic continuous iff the pre image of each Is in τ_2 is an Is in τ_1 .

3. Strongly I α_{g}^{\wedge} -Continuous

This section we define the concepts of strongly $I\alpha_g^{\Lambda}$ -continuous and some results are discussed.

Definition 3.1: A function $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is called a **strongly I\alpha_{g}^{\Lambda}-continuous function** if the inverse image of every $I\alpha_{g}^{\Lambda}$ -open set in $(Y, I\tau_{\theta})$ is I-open in $(\mathcal{H}, I\tau_{\mu})$.

Theorem 3.3: If a map $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is strongly $I\alpha_g^{\Lambda}$ -continuous then it is I-continuous.

Proof: Let P be a I-open set in $(Y, I\tau_{\theta})$. Since every I-open set is $I\alpha_{g}^{\Lambda}$ open, P is $I\alpha_{g}^{\Lambda}$ -open in $(Y, I\tau_{\theta})$. Since f is strongly $I\alpha_{g}^{\Lambda}$ -continuous, $f^{-1}(P)$ is I-open in $(\mathcal{H}, I\tau_{u})$. Therefore, f is I-continuous.

Remark 3.4: The converse of the above theorem is not true as seen from the following example.

$$\begin{split} \mathcal{H}, \phi, \{b\} >, \ \mathcal{A}_2 = < \mathcal{H}, \{a\}, \{b\} >, \ \mathcal{A}_3 = < \mathcal{H}, \{a\}, \phi >, \ \mathcal{A}_4 = < \\ \mathcal{H}, \phi, \phi >. \quad I\tau_{\theta} = \{Y, \phi, < Y, \phi, \phi >, < Y, \{b\}, \phi >\}. \quad \text{Then} \quad I\alpha_g^{\wedge} - \\ O(Y) = \{Y, \phi, < Y, \phi, \phi >, < Y, \{b\}, \phi >, < Y, \{a\}, \phi >, < \end{split}$$

$$\begin{split} &Y,\phi,\{a\}>,< Y,\{b\},\{a\}>\}. \quad \text{Define} \quad f: (\mathcal{H},I\tau_{\mu}) \ \longrightarrow \ (Y,I\tau_{\theta}) \quad \text{as} \\ &f(a)=b,f(b)=a. \quad \text{Then} \quad f^{-1}(< Y,\phi,\phi>)=<\mathcal{H},\phi,\phi>,f^{-1}(< Y,\{b\},\phi>)=<\mathcal{H},\{a\},\phi> \quad \text{Then} \ f \ \text{is} \ \text{I-continuous}. \ \text{But},\ f^{-1}(< Y,\{a\},\phi>)=<\mathcal{H},\{b\},\phi> \text{ which is not I-open in }\mathcal{H}. \ \text{Hence, }f \ \text{is} \\ &\text{not strongly }I\alpha_{g}^{\Lambda}\text{-continuous}. \end{split}$$

Theorem 3.6: A map $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is strongly $I\alpha_{g}^{\Lambda}$ continuous if and only if the inverse image of every $I\alpha_{g}^{\Lambda}$ -closed set in $(Y, I\tau_{\theta})$ is I-closed in $(\mathcal{H}, I\tau_{\mu})$.

Proof: Assume that f is strongly $I\alpha_g^{\Lambda}$ -continuous. Let 0 be any $I\alpha_g^{\Lambda}$ -closed set in $(Y, I\tau_{\theta})$. Then Y - 0 is $I\alpha_g^{\Lambda}$ -open in $(Y, I\tau_{\theta})$. Since f is strongly $I\alpha_g^{\Lambda}$ -continuous, $f^{-1}(Y - 0)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. But $f^{-1}(Y - 0) = \mathcal{H} / f^{-1}(0)$ and so $f^{-1}(0)$ is I-closed in $(\mathcal{H}, I\tau_{\mu})$.

Conversely, assume that the inverse image of every $I\alpha_g^{\wedge}$ -closed set in $(Y, I\tau_{\theta})$ is I-closed in $(\mathcal{H}, I\tau_{\mu})$. Let Y - 0 is $I\alpha_g^{\wedge}$ -closed in $(Y, I\tau_{\theta})$. By assumption, $f^{-1}(Y - 0)$ is I-closed in $(\mathcal{H}, I\tau_{\mu})$, but $f^{-1}(Y - 0) = \mathcal{H}/f^{-1}(0)$ and so $f^{-1}(0)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Therefore, f is strongly $I\alpha_g^{\wedge}$ -continuous.

Theorem 3.7: Every strongly I-continuous is strongly $I\alpha_g^{\wedge}$ -continuous.

Proof: Let $f:(\mathcal{H},I\tau_{\mu}) \to (Y,I\tau_{\theta})$ is strongly I-continuous. Let K be any $I\alpha_g^{\Lambda}$ -open set in Y. Since f is strongly I-continuous, the inverse image of every subset of Y is both I-open and I-closed in \mathcal{H} . Hence $f^{-1}(K)$ is I-open in \mathcal{H} . Therefore, f is strongly $I\alpha_g^{\Lambda}$ -continuous.

Remark 3.8: The converse of the above theorem need not be true as shown in the following example.

3.9: Let $\mathcal{H} = \{a, b\}$ and Example family $I\tau_{II} =$ $\{\mathcal{H}, \varphi, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4\}$ where $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{b\} \rangle$, $\mathcal{A}_2 = \langle \mathcal{H}, \varphi, \{b\} \rangle$ $\mathcal{H}, \{a\}, \{b\} >, \mathcal{A}_3 = \langle \mathcal{H}, \{a\}, \varphi >, \mathcal{A}_4 = \langle \mathcal{H}, \varphi, \varphi \rangle.$ Y = $\{a, b\}$ with $I\tau_{\theta}=\{Y, \phi, < Y, \phi, \{b\} >, < Y, \{a\}, \phi >\}$. Then $I\alpha_{g}^{\wedge}$ - $O(Y) = \{Y, \phi, \langle Y, \{a\}, \phi \rangle, \langle Y, \phi, \{b\} \rangle, \langle Y, \{a\}, \{b\} \rangle\}.$ Define $f: (\mathcal{H}, I\tau_{\mu}) \ \longrightarrow \ (Y, I\tau_{\theta}) \text{ as } f(a) = a, f(b) = b. \ \text{ Then, } f \text{ is strongly}$ $I\alpha_g^{\Lambda}$ -continuous. Then $f^{-1}(\langle Y, \varphi, \{b\} \rangle) = \langle \mathcal{H}, \varphi, \{b\} \rangle, f^{-1}(\langle Y, \varphi, \{b\} \rangle) = \langle \mathcal{H}, \varphi, \{b\} \rangle$ $f^{-1}(\langle Y, \{a\}, \{b\} \rangle) = \langle$ $Y, \{a\}, \phi > = \langle \mathcal{H}, \{a\}, \phi > \rangle$ and $\mathcal{H}, \{a\}, \{b\} >$. But, $f^{-1}(\langle Y, \phi, \{b\} \rangle) = \langle \mathcal{H}, \phi, \{b\} \rangle$ which is not I-closed in \mathcal{H} . Hence, f is not strongly I-continuous.

Theorem 3.10: Every strongly $I\alpha_g^{\wedge}$ -continuous is $I\alpha_g^{\wedge}$ -continuous. **Proof:** Let f: $(\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ be strongly $I\alpha_g^{\wedge}$ -continuous. Let L be a I-open set in Y. Then L is $I\alpha_g^{\wedge}$ -open in Y. Since f is strongly $I\alpha_g^{\wedge}$ -continuous, $f^{-1}(L)$ is I-open in \mathcal{H} . Since every I-open is $I\alpha_g^{\wedge}$ -open, $f^{-1}(L)$ is $I\alpha_g^{\wedge}$ -open in \mathcal{H} . Therefore, f is $I\alpha_g^{\wedge}$ -continuous.

Remark 3.11: The converse of the above theorem need not be true as shown in the following example.

Example 3.12: Let $\mathcal{H} = \{a, b\}, I\tau_{\mu} = \{\mathcal{H}, \varphi, < \mathcal{H}, \varphi, \varphi >, < \mathcal{H}, \{b\}, \varphi >\}$. Then $I\alpha_{g}^{\wedge}-O(\mathcal{H}) = \{\mathcal{H}, \varphi, < \mathcal{H}, \varphi, \varphi, \varphi >, < \mathcal{H}, \{b\}, \varphi >, < \mathcal{H}, \{a\}, \varphi >, < \mathcal{H}, \varphi, \{a\} >, < \mathcal{H}, \{b\}, \{a\} >\}$. Y={a,b} with IT $I\tau_{\theta}$ ={Y, φ , < Y, {b}, {a} >, < Y, φ , {a} >}. Then $I\alpha_{g}^{\wedge}-O(\mathcal{H}) = \{Y, \varphi, < Y, \varphi, \varphi, < Y, \{b\}, \{a\} >, < Y, \varphi, \{a\} >\}$. Then $I\alpha_{g}^{\wedge}-O(\mathcal{H}) = \{Y, \varphi, < Y, \varphi, \varphi, < Y, \{b\}, \varphi >, < Y, \varphi, \{a\} >\}$. Then $I\alpha_{g}^{\wedge}-O(\mathcal{H}) = \{Y, \varphi, < Y, \varphi, \varphi, < Y, \{b\}, \{a\} >\}$. Define f: $(\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ as f(a) = a, f(b) = b. $f^{-1}(< Y, \varphi, \{a\} >) = < \mathcal{H}, \{b\}, \{a\} >$. Then f is $I\alpha_{g}^{\wedge}$ -continuous. But, $f^{-1}(< Y, \varphi, \{a\} >) = < \mathcal{H}, \varphi, \{a\} >$ which is not I-open in \mathcal{H} . Hence, f is not strongly $I\alpha_{g}^{\wedge}$ -continuous.

Theorem 3.13: If a map $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is strongly $I\alpha_g^{\Lambda}$ continuous and a map $g: (Y, I\tau_{\theta}) \rightarrow (Z, I\tau_{\rho})$ is $I\alpha_g^{\Lambda}$ -continuous then $g \circ f: (\mathcal{H}, I\tau_{\mu} \rightarrow (Z, I\tau_{\rho}) \text{ is I-continuous.}$

Proof: Let 0 be any I-open set in Z. Since g is $I\alpha_g^{\Lambda}$ -continuous, $g^{-1}(0)$ is $I\alpha_g^{\Lambda}$ -open in Y.

Since f is strongly $I\alpha_g^{\wedge}$ -continuous $f^{-1}(g^{-1}(0))$ is I-open in $\mathcal{H}.$ But,(g \circ f) $^{-1}(0)$ = $f^{-1}(g^{-1}(0))$. Therefore, g \circ f is I-continuous. Theorem 3.14: If a map $f:(\mathcal{H},I\tau_{\mu}) \rightarrow (Y,I\tau_{\theta})$ is strongly $I\alpha_g^{\wedge}$ -continuous and a map $g:(Y,I\tau_{\theta}) \rightarrow (Z,I\tau_{\rho})$ is $I\alpha_g^{\wedge}$ -irresolute , then $g \circ f:(\mathcal{H},I\tau_{\mu}) \rightarrow (Z,I\tau_{\rho})$ is strongly $I\alpha_g^{\wedge}$ -continuous.

Proof: Let *S* be any $I\alpha_g^{\wedge}$ -open set in *Z*. Since *g* is $I\alpha_g^{\wedge}$ -irresolute, $g^{-1}(S)$ is $I\alpha_g^{\wedge}$ -open in *Y*. Also, *f* is strongly $I\alpha_g^{\wedge}$ -continuous $f^{-1}(g^{-1}(S))$ is I-open in \mathcal{H} . But, $(g \circ f)^{-1}(S) = f^{-1}g^{-1}(S)$ is I-open in \mathcal{H} . Hence, $g \circ f : (\mathcal{H}, I\tau_{\mu}) \to (Z, I\tau_{\rho})$ is strongly $I\alpha_g^{\wedge}$ -continuous.

Theorem 3.15: If a map $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ is $I\alpha_g^{\wedge}$ continuous and a map $g: (Y, I\tau_{\theta}) \to (Z, I\tau_{\rho})$ is strongly $I\alpha_g^{\wedge}$ continuous, then $g \circ f: (\mathcal{H}, I\tau_{\mu}) \to (Z, I\tau_{\rho})$ is $I\alpha_g^{\wedge}$ -irresolute.

Proof: Let *P* be any $I\alpha_g^{\wedge}$ -open set in *Z*. Since *g* is strongly $I\alpha_g^{\wedge}$ -continuous, $g^{-1}(P)$ is I-open in *Y*. Also, *f* is $I\alpha_g^{\wedge}$ -continuous, $f^{-1}(g^{-1}(P))$ is $I\alpha_g^{\wedge}$ -open in \mathcal{H} . But $(g \circ f)^{-1}(P) = f^{-1}(g^{-1}(P))$. Hence, $g \circ f : (\mathcal{H}, I\tau_{\mu}) \to (Z, I\tau_{\rho})$ is $I\alpha_g^{\wedge}$ -irresolute.

Theorem 3.16: Let $(\mathcal{H}, I\tau_{\mu})$ be a ITS and $(Y, I\tau_{\theta})$ be a $I\alpha_{g}^{\wedge}$ - $T_{\frac{1}{2}}$ space and $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ be a map. Then the following are equivalent

- (1) *f* is strongly $I\alpha_a^{\wedge}$ -continuous
- (2) f is I-continuous

Proof: (1) \Rightarrow (2) Let M be a I-open set in Y. Since every I-open set is $I\alpha_g^{\wedge}$ -open, M is $I\alpha_g^{\wedge}$ -open in Y. Then $f^{-1}(M)$ is I-open in \mathcal{H} . Hence, f is I-continuous. (2) \Rightarrow (1) Let L be any $I\alpha_g^{\wedge}$ -open in $(Y, I\tau_{\theta})$. Since, $(Y, I\tau_{\theta})$ is a $I\alpha_g^{\wedge}$ - $T_{\frac{1}{2}}$ space, L is I-open in $(Y, I\tau_{\theta})$. Since, f is I-continuous, $f^{-1}(L)$ is I-op

en in $(\mathcal{H}, I\tau_{\mu})$. Hence, f is strongly $I\alpha_{q}^{\Lambda}$ -continuous.

Theorem 3.17: Let $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ be a map. Both $(\mathcal{H}, I\tau_{\mu})$ and $(Y, I\tau_{\theta})$ are $I\alpha_{g}^{\wedge} T_{\frac{1}{2}}$ space. Then the following are equivalent.

- (1) f is $I\alpha_g^{\Lambda}$ -irresolute
- (2) f is strongly $I\alpha_q^{\wedge}$ -continuous
- (3) f is I-continuous
- (4) f is $I\alpha_a^{\wedge}$ -continuous

Proof: The proof is obvious.

Theorem 3.18: The composition of two strongly $I\alpha_g^{\wedge}$ -continuous maps is strongly $I\alpha_a^{\wedge}$ - continuous.

Proof: Let *O* be a $I\alpha_g^{\wedge}$ -open set in $(Z, I\tau_{\rho})$. Since, *g* is strongly $I\alpha_g^{\wedge}$ continuous, $g^{-1}(O)$ is I-open in $(Y, I\tau_{\theta})$. Then, $g^{-1}(O)$ is $I\alpha_g^{\wedge}$ open in $(Y, I\tau_{\theta})$. Also, *f* is strongly $I\alpha_g^{\wedge}$ -continuous which implies $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Hence, $(g \circ f)$ is strongly $I\alpha_g^{\wedge}$ -continuous.

Theorem 3.19: If $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ and $g: (Y, I\tau_{\theta}) \to (Z, I\tau_{\rho})$ be any two maps .Then their composition $g \circ f: (\mathcal{H}, I\tau_{\mu}) \to (Z, I\tau_{\rho})$ is strongly $I\alpha_{g}^{\wedge}$ -continuous if g is strongly $I\alpha_{g}^{\wedge}$ -continuous and f is I-continuous.

Proof: Let *S* be a $I\alpha_g^{\wedge}$ -open in $(Z, I\tau_{\rho})$. Since, *g* is strongly $I\alpha_g^{\wedge}$ -continuous, $g^{-1}(S)$ is I-open in $(Y, I\tau_{\theta})$. Since *f* is I-continuous, $f^{-1}(g^{-1}(S)) = (g \circ f)^{-1}(S)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Hence, $(g \circ f)$ is strongly $I\alpha_a^{\wedge}$ -continuous.

3. Perfectly $I\alpha_q^{\wedge}$ -Continuous Function

Under this section we introduce the concepts of perfectly $I\alpha_g^{\wedge}$ continuous function and we investigate relationships among them and give examples.

Definition 3.1: A map $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ is said to be **perfectly** $I\alpha_{g}^{\wedge}$ -continuous function if the inverse image of every $I\alpha_{g}^{\wedge}$ -open set in $(Y, I\tau_{\theta})$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$.

Example 3.2: Let $\mathcal{H} = \{a, b\}, I\tau_{\mu} = \{\mathcal{H}, \phi, < \mathcal{H}, \varphi, \varphi >, < \mathcal{H}, \{a\}, \varphi >, < \mathcal{H}, \varphi, \{a\} >\} = I\tau_{\mu}^{c}$. Y={a,b} with IT $I\tau_{\theta}$ ={Y, $\phi, < Y, \{a\}, \varphi >, < Y, \varphi, \{b\} >\}$. Then $I\alpha_{g}^{\wedge}$ -O(Y)= {Y, $\phi, < Y, \{a\}, \varphi >, < Y, \{a\}, \{b\} >\}$ Define $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ as

f(a) = a = f(b). Then $f^{-1}(\langle Y, \{a\}, \varphi \rangle) = \langle \mathcal{H}, \mathcal{H}, \varphi \rangle$, $f^{-1}(\langle Y, \varphi, \{b\} \rangle) = \langle \mathcal{H}, \varphi, \varphi \rangle$ and $f^{-1}(\langle Y, \{a\}, \{b\} \rangle) = \langle \mathcal{H}, \mathcal{H}, \varphi \rangle$ Then f is perfectly Ia_a^{\wedge} -continuous.

Theorem 3.3: If a map $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ is perfectly $I\alpha_{g}^{\wedge}$ -continuous then it is strongly $I\alpha_{g}^{\wedge}$ -continuous.

Proof: Assume that f is perfectly $I\alpha_g^{\wedge}$ -continuous. Let J be any $I\alpha_g^{\wedge}$ open set in $(Y, I\tau_{\theta})$. Since, f is perfectly $I\alpha_g^{\wedge}$ -continuous, $f^{-1}(J)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Therefore, f is strongly $I\alpha_g^{\wedge}$ -continuous.

Remark 3.4: The converse of the above theorem need not be true as shown in the following example.

Example 3.5: Let $\mathcal{H} = \{a, b\}$ and family $I\tau_{\mu} = \{\mathcal{H}, \varphi, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4\}$ where $\mathcal{A}_1 = \langle \mathcal{H}, \varphi, \{b\} \rangle$, $\mathcal{A}_2 = \langle \mathcal{H}, \{a\}, \{b\} \rangle$, $\mathcal{A}_3 = \langle \mathcal{H}, \{a\}, \varphi \rangle$, $\mathcal{A}_4 = \langle \mathcal{H}, \varphi, \varphi \rangle$ $Y = \{a, b\}$ with IT $I\tau_{\theta} = \{Y, \phi, \langle Y, \varphi, \{b\} \rangle, \langle Y, \{a\}, \varphi \rangle\}$. Then $I\alpha_g^{\wedge}$ -O(Y) = $\{Y, \phi, \langle Y, \{a\}, \varphi \rangle, \langle Y, \varphi, \{b\} \rangle, \langle Y, \{a\}, \{b\} \rangle\}$. Define $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ as f(a) = a, f(b) = b. Then $f^{-1}(\langle Y, \varphi, \{b\} \rangle) = \langle \mathcal{H}, \varphi, \{b\} \rangle$, $f^{-1}(\langle Y, \{a\}, \varphi \rangle) = \langle Y, \varphi, \{b\} \rangle$

 $\mathcal{H}, \{a\}, \varphi > \text{and } f^{-1}(\langle Y, \{a\}, \{b\} \rangle) = \langle \mathcal{H}, \{a\}, \{b\} \rangle$. Then, f is strongly $I\alpha_g^{\wedge}$ -continuous. But, $f^{-1}(\langle Y, \varphi, \{b\} \rangle) = \langle \mathcal{H}, \varphi, \{b\} \rangle$ which is not I-closed in \mathcal{H} . Hence, f is not perfectly $I\alpha_a^{\wedge}$ -continuous.

Theorem 3.6: If a map $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is perfectly $I\alpha_{g}^{\wedge}$ -continuous, then f is perfectly I-continuous.

Proof: Let *S* be a I-open set in *Y*. Then *S* is a $I\alpha_g^{\wedge}$ -open set in $(Y, I\tau_{\theta})$. Since *f* is perfectly $I\alpha_g^{\wedge}$ -continuous, $f^{-1}(S)$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. Therefore, *f* is perfectly I-continuous.

Remark 3.7 : The converse of the above theorem need not be true as shown in the following example.

Example 3.8: Let $\mathcal{H} = \{a, b\}$ and family $I\tau_{\mu} = \{\mathcal{H}, \varphi, < \mathcal{H}, \varphi, \{a\} >, < \mathcal{H}, \{a\}, \varphi >, < \mathcal{H}, \varphi, \varphi >\} = I\tau^{c}$ a $Y = \{a, b\}$ with $I\tau_{\theta} = \{Y, \phi, < Y, \{b\}, \varphi >, < Y, \varphi, \varphi >\}$. Then $I\alpha_{g}^{\wedge} - O(Y) = \{Y, \phi, < Y, \varphi, \varphi >, < Y, \{b\}, \varphi >, < Y, \varphi, \{a\} >, < Y, \{a\}, \varphi >, <$

 $Y, \{b\}, \{a\} > \}$. Define $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ as f(a) = b, f(b) = a. Then $f^{-1}(\langle Y, \{b\}, \varphi \rangle) = \langle \mathcal{H}, \{a\}, \varphi \rangle, f^{-1}(\langle Y, \varphi, \varphi \rangle) = \langle \mathcal{H}, \varphi, \varphi \rangle$. Then f is perfectly I-continuous. Here, $f^{-1}(\langle Y, \{a\}, \varphi \rangle) = \langle \mathcal{H}, \{b\}, \varphi \rangle$, which is not I-open and not *I*-closed set in $(\mathcal{H}, I\tau_{\mu})$. Therefore, f is not perfectly $I\alpha_{g}^{\wedge}$ -continuous.

Theorem 3.9: A map $f: (\mathcal{H}, I\tau_{\mu}) \to (Y, I\tau_{\theta})$ is perfectly $I\alpha_{g}^{\wedge}$ continuous if and only if $f^{-1}(\mathcal{A})$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$ for every $I\alpha_{g}^{\wedge}$ -closed set \mathcal{A} in $(Y, I\tau_{\theta})$.

Proof: Let \mathcal{A} be any $I\alpha_g^{\wedge}$ -closed set in $(Y, I\tau_{\theta})$. Then \mathcal{A}^c is $I\alpha_g^{\wedge}$ -open in $(Y, I\tau_{\theta})$. Since, f is perfectly $I\alpha_g^{\wedge}$ -continuous, $f^{-1}(\mathcal{A}^c)$ is

both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. But $f^{-1}(\mathcal{A}^{c}) = \mathcal{H}/f^{-1}(\mathcal{A})$ and so, $f^{-1}(\mathcal{A})$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. Conversely, assume that the inverse image of every $I\alpha_{g}^{\Lambda}$ -closed set in $(Y, I\tau_{\theta})$ is both I-open and I-closed in $(Y, I\tau_{\theta})$. Let \mathcal{A} be any $I\alpha_{g}^{\Lambda}$ -open in $(Y, I\tau_{\theta})$. Then, \mathcal{A}^{c} is $I\alpha_{g}^{\Lambda}$ -closed in $(Y, I\tau_{\theta})$. By assumption, $f^{-1}(\mathcal{A}^{c})$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. But, $f^{-1}(\mathcal{A}^{c}) =$ $\mathcal{H}/f^{-1}(\mathcal{A})$ and so, $f^{-1}(\mathcal{A})$ is both I-open and I-closed in $(Y, I\tau_{\theta})$. Therefore, f is perfectly $I\alpha_{g}^{\Lambda}$ -continuous.

Theorem 3.10: Let $(\mathcal{H}, I\tau_{\mu})$ be a I-discrete topological space and $(Y, I\tau_{\theta})$ be any ITS's. Let $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ be a map, then the following statements are true.

(1) f is strongly I α_g^{\wedge} -continuous

(2) f is perfectly I α_g^{Λ} -continuous

Proof: (1) \Rightarrow (2) Let J be any $I\alpha_g^{\wedge}$ -open set in $(Y, I\tau_{\theta})$. By hypothesis, $f^{-1}(J)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Since $(\mathcal{H}, I\tau_{\mu})$ is a I-discrete space, $f^{-1}(J)$ is I-closed in $(\mathcal{H}, I\tau_{\mu})$. Then, $f^{-1}(J)$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. Hence, f is perfectly $I\alpha_g^{\wedge}$ -continuous.

(2) \Rightarrow (1) Let J be any $I\alpha_g^{\wedge}$ -open set in $(Y, I\tau_{\theta})$. Then, $f^{-1}(J)$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. Hence, f is strongly $I\alpha_g^{\wedge}$ -continuous.

Theorem 3.11. If $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ and $g: (Y, I\tau_{\theta}) \rightarrow (Z, I\tau_{\rho})$ are perfectly $I\alpha_{g}^{\wedge}$ -continuous then, the composition $g \circ f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Z, I\tau_{\rho})$ is also perfectly $I\alpha_{g}^{\wedge}$ -continuous.

Proof: Let K be a $I\alpha_g^{\Lambda}$ -open set in $(Z, I\tau_{\rho})$. Since, g is perfectly $I\alpha_g^{\Lambda}$ continuous, $g^{-1}(K)$ is both I-open and I-closed in $(Y, I\tau_{\theta})$. Since every I-open set is $I\alpha_g^{\Lambda}$ -open, $g^{-1}(K)$ is $I\alpha_g^{\Lambda}$ -open in $(Y, I\tau_{\theta})$. Since f is perfectly $I\alpha_g^{\Lambda}$ -continuous, $f^{-1}(g^{-1}(K))$ is both I-open and Iclosed in $(\mathcal{H}, I\tau_{\mu})$. But, $f^{-1}(g^{-1}(K)) = (g \circ f)^{-1}(K)$. Hence, $g \circ f$ is perfectly $I\alpha_g^{\Lambda}$ -continuous.

Theorem 3.12: If $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ and $g: (Y, I\tau_{\theta}) \rightarrow (Z, I\tau_{\rho})$ be any two maps . Then, $g \circ f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Z, I\tau_{\rho})$ is strongly $I\alpha_{g}^{\Lambda}$ -continuous if g is perfectly I-continuous and f is I-continuous.

Proof: Let 0 be any $I\alpha_g^{\wedge}$ -open set in $(Z, I\tau_{\rho})$. Since g is perfectly $I\alpha_g^{\wedge}$ -continuous, $g^{-1}(0)$ is I-open and I-closed in $(Y, I\tau_{\theta})$. Since, f is I-continuous. $f^{-1}(g^{-1}(0)) = (g \circ f)^{-1}(0)$ is I-open in $(\mathcal{H}, I\tau_{\mu})$. Hence, $g \circ f$ is strongly $I\alpha_g^{\wedge}$ -continuous.

Theorem 3.13: If a map $f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Y, I\tau_{\theta})$ is perfectly $I\alpha_g^{\Lambda}$ continuous and a map $g: (Y, I\tau_{\theta}) \rightarrow (Z, I\tau_{\rho})$ is strongly $I\alpha_g^{\Lambda}$ continuous then, $g \circ f: (\mathcal{H}, I\tau_{\mu}) \rightarrow (Z, I\tau_{\rho})$ is perfectly $I\alpha_g^{\Lambda}$ continuous. **Proof:** Let G be any $I\alpha_g^{\Lambda}$ -open set in $(Z, I\tau_{\rho})$. Since g is strongly $I\alpha_g^{\Lambda}$ -continuous, $g^{-1}(G)$ is I-open in $(Y, I\tau_{\theta})$. Then, $g^{-1}(G)$ is $I\alpha_g^{\Lambda}$ -open in $(Y, I\tau_{\theta})$. By hypothesis, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is both I-open and I-closed in $(\mathcal{H}, I\tau_{\mu})$. Therefore, $g \circ f$ is perfectly $I\alpha_g^{\Lambda}$ -continuous.

References:

[1] D. Coker, A Note On Intuitionistic Sets and Intuitionistic Points, Turkish Journal of Mathematics 20(3) (1996), 343-351

[2] D. Coker, An introduction to intuitionistic topological spaces. Busefal.2000; 81: 51-56

[3] J .Younis Yaseen, G.Asmaa Raouf(2009) On Generalized Closed Sets and Generalized Continuity On Intuitionistic Topological spaces, Journal of al-anbar University for pure Science, 3(1), (2009).

[4] J.Arul Jesti and K.Heartlin A New Notion of Closed Sets in Intuitionistic Topological Spaces Journal of Algebraic Statistics Vol 13,ISSN 1309-3452, P.no 3188-3196 (2022)

[5] J.Arul Jesti and K.Heartlin On I α_g^{Λ} - Continuous Function In Intuitionistic Topological Spaces Gis Science Vol 40, ISSN 1869-9391 P.no 1709-1715, (2022)

[6] H.Taha Jassim , R. Samer Yaseen and S. Luma Abdual Baqi, some Generalized sets and Mappings in intuitionistic topological space, Journal of AL. Qadisiyah for computer science and Mathematices 7(2)(2015), 80-96.