Impact Of Information Technology On Fast Food Supply Chain Performance: The Moderating Role Of Information Sharing

ISSN: 2197-5523 (online)

Quoc Nghi Nguyen¹, La Nguyen Thuy Dung²

¹School of Economics, Can Tho University, Can Tho, Vietnam Email: quocnghi@ctu.edu.vn.

²School of Economics, Can Tho University, Can Tho, Vietnam Email: Intdung@ctu.edu.vn.

Abstract

The objective of the study is to demonstrate the influence of information technology on fast food supply chain performance through information sharing. Research data were collected by quota sampling, with a sample size of 210 fast-food businesses in Vietnam. The authors combined qualitative methods and quantitative methods to reach the research objectives. Applying the structural equation modeling (SEM), the research has proven that information technology has a positive effect on information sharing, thereby positively impacting the performance of fast food supply chains. Research results have confirmed the essential role of information technology in fast food supply chain performance.

Keywords: information technology, information sharing, supply chain performance, business, fast food.

Introduction

Information technology plays an important role in supply chain operations, especially in the industrial revolution 4.0 (Nguyen & Hoang, 2022). Information technology has penetrated every stage of the supply chain, changing the way people perform activities related to exchange and linkages' quality (Palmer & Griffith, 1998). Information technology creates a close connection in the supply chain, which is significant for effective supply chain management (Kopczak, 1997; Simchi-Levi et al., 2003). In today's competitive environment, information technology is one of the strategies most applied by enterprises to enhance their competitive advantages (Pinto et al., 2013; Söderholm & Norrbin, 2014). The advancement of information technology facilitates the linkage between components in the supply

ISSN: 2197-5523 (online)

chain and minimizes supply chain operating costs (Huang et al., 2003; Siau & Tian, 2004; Li et al., 2006), and improves supply chain performance (Bakos et al., 1993; Chen et al., 2004). In recent years, several studies have been conducted to demonstrate the positive influence of information technology on supply chain performance (Chinomona, 2013; Sambamurthy et al., 2003; Wang et al., 2016; Chae et al., 2018; Basheer et al., 2019; Tian et al., 2020; Yun et al., 2020; Nguyen & Hoang, 2022). At the same time, many studies have proven that sharing information between members of the supply chain helps information circulate faster, reduces order response time, increases cooperation, and shares risks and benefits among members, thereby improving supply chain performance (Li, 2006; Madlberger, 2009; Koçoğlu et al., 2011; Wong et al., 2011; Du et al., 2012; Khan et al., 2016; Ahmad & Zailani, 2017; Gandhi et al., 2017; Afshan, 2018; De Vass et al., 2018; Nguyen & Hoang, 2022).

Most studies have been done in developed countries while few studies have been done in developing countries with similar contexts to Vietnam, especially for fast food supply chains. Therefore, this study was conducted to demonstrate the influence of information technology and information sharing on the performance of fast food supply chains in Vietnam.

Theoretical framework and research hypotheses

Theoretical framework

Information technology in supply chains

Information technology is a definition that includes computer systems, software, and internet networks used for data processing, exchange, storage, and sharing (Thong & Yap, 1995; Daintith, 2009). Information technology enhances supply chain efficiency by providing real-time information on product availability, inventory level, shipment status, and production requirements (Radstaak & Ketelaar, 1998). The application of information technology in supply chains helps to accelerate data exchange and information on contracts and real-time progress reports (Barratt, 2004). Information technology promotes supply chain operations through product improvement, online marketing, product quality assurance, and supporting business operations (Trainor et al., 2011; Lee et al., 2014; Peppard et al., 2014; Royle & Laing, 2014).

Information sharing in supply chains

Information sharing in a supply chain is the ability to handle the movement of information between actors in the supply chain (Shore

ISSN: 2197-5523 (online)

& Venkatachalam, 2003). Information sharing refers to necessary information that an enterprise communicates to partners in the supply chain (Li et al., 2006). Information sharing refers to the access to private data between trading partners, allowing them to track the progress of products and orders in different supply chain processes (Simatupang & Sridharan, 2002). Information that business owners can share with customers includes order fulfillment status, problems occurring during order processes, ability to deliver on time, and production capacity (Sezen, 2008). The quality of information sharing includes aspects such as accuracy, timeliness, completeness, and reliability of information exchanged (Monczka et al., 1998; Moberg et al., 2002). Information sharing is important for supply chain management (Monczka et al., 1998; Moberg et al., 2002).

Supply chain performance

Supply chain performance is the performance of processes and functions in the supply chain (Srinivasan et al., 2011). To measure supply chain performance, researchers often use two types of metrics: cost and reliability (Beamon, 1999; Holmberg, 2000; Sezen, 2008; Li et al., 2006). Cost metrics include out-of-business logistics costs, warehouse costs, storage costs, and asset turnovers. Reliability is demonstrated through the ability to fulfill orders, safety stock, and customer complaints (Lee et al., 2007). Some of the criteria commonly used to measure supply chain performance include inventory costs, ontime deliveries, product availability, performance, and response time (Beamon, 1999), flexibility (Vickery et al., 1999; Sezen, 2008; Qrunfleh & Tarafdar, 2014) and customer satisfaction level (Chen and Paulraj, 2004; Qrunfleh & Tarafdar, 2014).

Research hypotheses

The relationship between information technology and information sharing

Information technology plays an essential role in creating a successful and effective information-sharing process (Wu, 2009). According to Dubey et al. (2018), information technology is the basis to create software to provide reliable information to stakeholders. Besides, information technology helps organizations keep up-to-date with ongoing progress and data related to scheduling or delivery (Li et al., 2009). Information technology allows enterprises and suppliers to communicate openly and frequently, to discover and share more information (Kopczak, 1997; Simchi-Levi et al., 2003). Information technology promotes easier and more efficient information sharing,

fast food supply chains.

improving organizational competitiveness (Ramakrishna, 2016; Ciccullo et al., 2018). Several studies have demonstrated the positive influence of information technology on information sharing in the supply chain (Lee & Whang, 2000; Jharkharia & Shankar, 2005; Li et al, 2011; Prajogo & Olhager, 2012; Lee & Joshi, 2016; Alderete et al., 2018; Nguyen & Hoang, 2022). Therefore, the study proposes hypothesis H1:

ISSN: 2197-5523 (online)

The relationship between information technology and supply chain performance

Information technology has a positive impact on information sharing in

Information technology is one of the important factors in supply chain management, improving supply chain performance (Wang et al., 2016; Basheer et al., 2019). Information technology greatly enhances the quality of products/services and reliability during the delivery process (Brah & Ying Lim, 2006). Information technology improves business processes and the business performance of enterprises (Melville et al., 2004). Moreover, information technology allows organizations to internally integrate, or integrate with suppliers and customers to maximize operational efficiency (Kaliani Sundram et al., 2018; Tarigan et al., 2020). Many researchers have highlighted the positive influence of information technology on supply chain performance (Han et al., 2017; Chae et al., 2018; Daneshvar Kakhki & Gargeya, 2019; Tian et al., 2020; Yun et al., 2020; Nguyen & Hoang, 2022) and argue that competitive advantage in the supply chain can be achieved by the appropriate application of information technology (Sambamurthy et al., 2003; Chinomona, 2013; Wang et al., 2016). Hence, the study proposes hypothesis H2: Information technology has a positive impact on fast food supply chain performance.

Relationship between information sharing and supply chain performance

Information sharing is a major component in managing supply chain performance (Hudnurkar et al., 2014). Information sharing brings some benefits to supply chain management such as enhancing cooperation (Eng, 2006), reducing uncertainty/risk in forecasting (Li et al., 2006; Zhou & Benton, 2007), increasing response level, shortening production cycle (Premus & Sanders, 2008; Koçoğlu et al., 2011), Identify problems that arise quickly (De Vass et al., 2018), reducing cost, and efficient managing events in the supply chain (Soosay et al., 2008; Kim & Chai, 2017; Zhang et al., 2019). Researchers claim that information sharing has a positive impact on supply chain performance (Li et al., 2006; Madlberger, 2009; Koçoğlu et al., 2011; Wong et al., 2011; Du et al., 2012; Khan et al., 2016;

Ahmad & Zailani, 2017; Gandhi et al., 2017; Afshan, 2018; Nguyen & Hoang, 2022). The study proposes hypothesis H3: Information sharing has a positive impact on fast food supply chain performance.

Based on the literature review and the proposed research hypotheses, the study has applied focus group discussion, which is frequently used as a qualitative approach to gain an in-depth understanding of social issues. The group discussion was conducted with 7 fast food business managers in Vietnam and was under the authors' supervision. The results of the group discussion help identify the appropriate scales for the factors of the research model. The result of the discussion helps identify the appropriate scales for the research model. The research model is set up below.

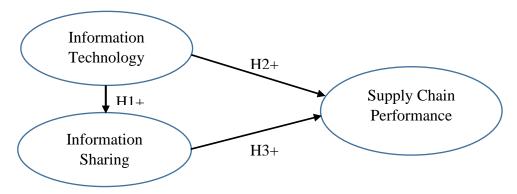
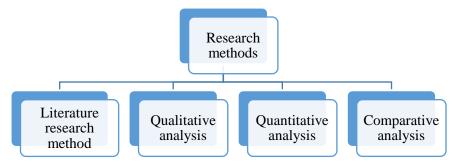


Figure 1: Proposed research model

Based on the literature review, the study proposes scales for the research model. The Information technology scale includes 4 observed variables based on the scales of Huo et al. (2014); Marinagi et al. (2014); Vanpoucke et al. (2017); Nguyen & Hoang (2022). The Information sharing scale includes 4 observed variables referenced from the scales of Huo et al. (2014); Afshan et al. (2018); Nazifa & Ramachandran (2019); Nguyen & Hoang (2022). The Supply chain performance scale includes 4 observed variables based on the scales of Mandal (2012), Nazifa & Ramachandran (2018), Obi et al. (2020), Yeh et al. (2020), Nguyen & Hoang (2022). The 5-point Likert scale is used to indicate the extent to which managers agree or disagree with each statement, in which (1) Completely disagree, (2) Disagree, (3) Neutral, (4) Agree, and (5) Completely agree.

Table 1: Interpretation of observed variables in the research model


Factor	Observed variable	Scale	Reference resources		
	IT1: Applying information technology in supply	Likert	Huo et al. (2014),		
	chain operations.	1-5	Marinagi et al. (2014),		

Factor	Observed variable	Scale	Reference resources
	IT2: Information technology applications are		Vanpoucke et al.
Information	always up to date.		(2017), Nguyen &
technology	IT3: Information technology systems have		Hoang (2022)
(IT)	integrated capabilities.	1-5	
(11)	IT4: Information technology equipment systems		
	ensure good operation.	1-5	
	IS1: Information reliability is shared in the supply	Likert	
	chain.	1-5	Hug et al. (2014)
	IS2: Information technology is shared in the	Likert	Huo et al. (2014),
Information	supply chain.	1-5	Afshan et al. (2018), Nazifa &
Sharing (IS)	IS3: High level of information sharing between	Likert	Ramachandran (2019),
	actors in the supply chain.	1-5	Nguyen & Hoang (2022)
	IS4: High level of information sharing with	Likert	Nguyen & Hoang (2022)
	partners and customers.	1-5	
	SCP1: High level of risk management in the supply	Likert	
	chain.	1-5	Mandal (2012), Nazifa
Cupply Chain	SCP2: High level of responsiveness to market	Likert	& Ramachandran
Supply Chain Performance	changes.	1-5	(2018), Obi et al.
	SCP3: High level of relationship quality	Likert	(2020), Yeh et al.
(SCP)	management in the supply chain.	1-5	(2020), Nguyen &
	SCP4: Effective management of the organization's	Likert	Hoang (2022)
	supply chain.	1-5	

Research methodology

Analytical methods

To test the research hypotheses, a combination of qualitative research and quantitative research is applied (Figure 2). In the first step, expert consultation is applied to identify the appropriate scales for factors in the research model. Then, analytical methods used to test research hypotheses include Testing the reliability of the scale by Cronbach's alpha coefficient, exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and structural equation modeling (SEM).

Figure 2: Flowchart of the research methods (compiled by the authors)

ISSN: 2197-5523 (online)

Data collection method

To ensure the reliability of the SEM test, the sample size should be large because it is based on the theory of sample distribution (Raykov & Widaman, 1995), and the sample size limit should be 200 observations (Hoelter, 1983; Hoyle, 1995). Based on the proposed research model, the sample size was determined to have at least 200 observations. The study applied online interviews via Google Forms. The survey was conducted from August 2022 to September 2022. The survey subjects are Directors/Deputy Directors of fast food companies. The study used quota sampling to collect data. The selected grouping criteria include enterprise scale and operating area. The research sample size achieved is 210 enterprises with headquarters located in major provinces/cities in Vietnam: Ho Chi Minh City, Hai Phong City, Can Tho City, Ba Ria Vung Tau Province, Binh Duong Province, and Khanh Hoa Province. Thus, the sample size meets the requirements, ensuring the reliability of the model test.

Research results and discussion

Research results

Evaluate the reliability of the scales

Exploratory factor analysis (EFA) was used to test the convergent and discriminant validity of the scales. The result achieves the following values: the reliability of the observed variables was satisfactory with a Factor loading value > 0. 5 (Hair et al., 1998); The model's suitability test is satisfactory with the value of 0.5 < KMO = 0.894 < 1.0 (Hair et al., 1998); Bartlett's test on variable correlation reaches statistical value with Sig. = 0.00 < 0.05 (Hair et al., 1998); The cumulative variance test is satisfactory with a value of 67.18 % > 50% (Anderson & Gerbing, 1988). These analytical results have created 3 factors with Eigenvalue = 1.15 and there is no variable disturbance between factors, so the factors' names remain the same

Table 2: Evaluation of scale reliability

Observed variable	Mean	Standard deviation	Factor loading	Cronbach's alpha
Information Technology (IT)	0. 819			
IT1	3.43	0.703	0.754	
IT2	3.36	0.903	0.732	
IT3	3.33	0.832	0.585	

IT4	3.32	0.806	0.780	
Information Sharing (IS)		0. 807		
IS 1	3.52	0.778	0.769	
IS 2	3.57	0.750	0.647	
IS 3	3.60	0.819	0.691	
IS 4	3.49	0.778	0.699	
Supply Chain Performance (SCP)		0.858		
SCP1	3.52	0.919	0.868	
SCP2	3.65	0.901	0.786	
SCP3	3.65	1.035	0.754	
SCP4	3.70	0.788	0.701	

Cronbach's alpha value is used to check the reliability of the scales. The result in Table 2 shows that all scales have Cronbach's alpha value greater than 0.7. The corrected item-total correlation values are greater than 0.3, so no observed variables were excluded from the research model (Nunnally, 1978; Peterson, 1994; Slater, 1995). Therefore, all observed variables meet the requirements and are used for the next confirmatory factor analysis (CFA).

The CFA result in Table 3 shows that the model is suitable for the market data with the following indicators: P-value = 0.023 and χ^2/df = 1.431 < 2 (Carmines & McIver, 1981). Besides, the GFI = 0.946, TLI = 0.974, and CFI = 0.980 are all greater than 0.9, and the RMSEA = 0.045 \leq 0.08 (Bentler & Bonett, 1980; Anderson & Gerbing, 1988). The CFA result also indicates that the correlation value between factors is less than 1, so the model achieves unidimensionality. The standardized regression weights of the factors are all greater than 0.5 and the unstandardized regression weights are all statistically significant, so the model reaches convergent validity. Besides, the correlation coefficient and standard deviation are all < 0.9, so the model achieves discriminant validity (Hair et al., 2014).

Table 3: CFA analytical result

Criteria	CFA	Comparative index	Reference resources
χ^2/df	1.431	≤ 2	
P-value	0.023	< 0.05	
GFI	0.946	≥ 0.9	Anderson & Gerbing
TLI	0.974	≥ 0.9	(1988), Hair et al. (2014)
CFI	0.980	≥ 0.9	
RMSEA	0.045	≤ 0.08	

Based on Table 4, the P_c value (minimum 0.81) and P_{vc} value (minimum 0.51) of the scales are satisfactory (Fornell & Larcker, 1981). In addition

to this, the α value of factors are all greater than 0.8, so it is satisfactory (Nunnally & Bernstein, 1994). Thus, the research data is consistent with the market data, achieving convergent and discriminant validity,

ISSN: 2197-5523 (online)

Table 4: Testing the scales in the model

unidimensionality, and reliability.

Factor	Number of observed variables	Composite reliability (P _c)	Average Variance Extracted (P _{vc})	Reference resources
Information Technology (IT)	4	0.82	0.54	Fornell &
Information Sharing (IS)	4	0.81	0.51	Larcker
Supply Chain Performance (SCP)	4	0.86	0.61	(1981)

Testing the research hypotheses

Structural equation modeling is applied to test the research hypotheses. Table 5 shows that all research hypotheses are accepted at the 1% significance level. Therefore, information technology and information sharing have a positive relationship with a statistical significance level of 1%. Besides, information technology and information sharing have a positive effect on fast food supply chain performance with statistical significance at 1%.

Table 5: Testing of research hypotheses

	Unstandardized			Standardized	Significa	
Relationship	Estimated	Standard	Critical	estimated value	nce	Hypothesis
	value	error S.E	ratio C.R	estimated value	lice	
IS < IT	0.712	0.119	5.988	0.582	***	H1: accepted
SCP < IT	0.717	0.153	4.676	0.435	***	H2: accepted
SCP < IS	0.576	0.123	4.697	0.427	***	H3: accepted

Discussion

Hypothesis H1: Information technology positively impacts information sharing in the fast food supply chain. Based on the estimation results in Table 5, information technology and information sharing have a positive relationship with the standardized estimation coefficient of 0.582 and statistical significance p = 0.000. It concludes that adequate investment in information technology of fast food businesses improves the reliability and quality of information sharing among the supply chain's members. The research result has confirmed the important role of information technology in the information-sharing process (Wu, 2009), promoting an easier and more effective information-sharing process (Ramakrishna, 2016; Ciccullo et al., 2018). The finding is consistent with studies proposed by Lee & Whang (2000),

ISSN: 2197-5523 (online)

Jharkharia & Shankar (2005), Li et al. (2011), Prajogo & Olhager (2012), Lee & Joshi (2016), Alderete et al. (2018), Nguyen & Hoang (2022).

Hypothesis H2: Information technology positively impacts fast food supply chain performance. This hypothesis is accepted with the standardized estimated value of 0.435 and the statistical significance level p = 0.000. Thus, the more fast-food businesses invest in information technology, the better the performance of the fast-food supply chain. Information technology allows organizations to integrate internally, with suppliers and customers to maximize operational efficiency (Kaliani Sundram et al., 2018; Tarigan et al., 2020). The result is consistent with studies proposed by Han et al. (2017), Chae et al. (2018), Daneshvar Kakhki & Gargeya (2019), Tian et al. (2019), Yun et al. (2020), Nguyen & Hoang (2022).

Hypothesis H3: Information sharing has a positive impact on fast food supply chain performance. Based on Table 5, information sharing has a positive effect on fast food supply chain performance, with a standardized estimated value of 0.427 and statistical significance p = 0.000. The result has confirmed that information sharing is an important component of supply chain performance management (Hudnurkar et al., 2014), enhancing cooperation in the supply chain (Eng, 2006), improving the level of order response (Premus & Sanders, 2008; Koçoğlu et al., 2011), contributing significantly to cost reduction and efficient activity management (Soosay et al., 2008; Kim & Chai, 2017; Zhang et al., 2019). The result is similar to studies proposed by Li et al. (2006), Madlberger (2009), Koçoğlu et al. (2011), Wong et al. (2011), Du et al. (2012), Khan et al. (2016), Ahmad & Zailani (2017), Gandhi et al. (2017), Afshan (2018), Nguyen & Hoang (2022).

Conclusion

Overall, the study has achieved the research objective, which is to demonstrate the role of information technology in the performance of fast food supply chains in Vietnam. The study has demonstrated the positive influence of information technology on fast food supply chain performance. Besides, information technology has a positive impact on information sharing, thereby improving the efficiency of the Vietnamese fast food supply chain. The governance implication suggested is that fast food supply chain managers need to pay special attention and invest properly in information technology. Administrators should establish regulations on the management and exchange of information in the supply chain. The research results are helpful references for fast food supply chain managers and supply chain researchers.

Bibliography

- Afshan, N., Chatterjee, S., & Chhetri, P. (2018). Impact of information technology and relational aspect on supply chain collaboration leading to financial performance: A study in Indian context. Benchmarking: An International Journal, 25(7), 2496-2511.
- 2. Ahmad, B. N., & Zailani, S. (2007). The effect of information quality on buyer-supplier relationships: a conceptual framework. In Proceedings of 7th Global Conference on Business and Economics, Rome, Italy.
- 3. Alderete, M. V. (2018). The mediating role of ICT in the development of open government. Journal of Global Information Technology Management, 21(3), 172-187.
- 4. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
- Bakos, J. Y., & Brynjolfsson, E. (1993). From vendors to partners: Information technology and incomplete contracts in buyer-supplier relationships. Journal of Organizational Computing and Electronic Commerce, 3(3), 301-328.
- Barratt, M. (2004). Understanding the meaning of collaboration in the supply chain. Supply Chain Management: an international journal, 9(1), 30-42.
- 7. Basheer, M., Siam, M., Awn, A., & Hassan, S. (2019). Exploring the role of TQM and supply chain practices for firm supply performance in the presence of information technology capabilities and supply chain technology adoption: A case of textile firms in Pakistan. Uncertain Supply Chain Management, 7(2), 275-288.
- 8. Beamon, B. M. (1999). Measuring supply chain performance. International journal of operations & production management, 19(3), 275-292.
- 9. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588-606
- 10. Brah, S. A., & Ying Lim, H. (2006). The effects of technology and TQM on the performance of logistics companies. International Journal of Physical Distribution & Logistics Management, 36(3), 192-209.
- Carmines, E. G., & McIver, J. P. (1981). Analyzing Models with Unobserved Variables: Analysis of Covariance Structures. In G. W. Bohrnstedt, & E. F. Borgatta (Eds.). Social Measurement: Current Issues (pp. 65-115). Beverly Hills: Sage Publications, Inc.
- 12. Chae, H. C., Koh, C. E., & Park, K. O. (2018). Information technology capability and firm performance: Role of industry. Information & Management, 55(5), 525-546.
- 13. Chen, I. J., & Paulraj, A. (2004). Towards a theory of supply chain management: the constructs and measurements. Journal of operations management, 22(2), 119-150.
- 14. Chen, I. J., Paulraj, A., & Lado, A. A. (2004). Strategic purchasing, supply management, and firm performance. Journal of operations management, 22(5), 505-523.

- ISSN: 2197-5523 (online)
- 15. Chinomona, R. (2013). The fostering role of information technology on SMEs' strategic purchasing, logistics integration, and business performance. Southern African Business Review, 17(1), 76-97.
- Ciccullo, F., Pero, M., Caridi, M., Gosling, J., & Purvis, L. (2018). Integrating the environmental and social sustainability pillars into the lean and agile supply chain management paradigms: A literature review and future research directions. Journal of Cleaner Production, 172(20), 2336-2350.
- 17. Daintith, J. (2009). A Dictionary of Physics (6th ed.). Oxford, UK: Oxford University Press.
- Daneshvar Kakhki, M., & Gargeya, V. B. (2019). Information systems for supply chain management: a systematic literature analysis. International Journal of Production Research, 57(15-16), 5318-5339.
- De Vass, T., Shee, H., & Miah, S. J. (2018). The effect of "Internet of Things" on supply chain integration and performance: An organizational capability perspective. Australasian Journal of Information Systems, 22, 1–29.
- 20. Du, T. C., Lai, V. S., Cheung, W., & Cui, X. (2012). Willingness to share information in a supply chain: A partnership-data-process perspective. Information & Management, 49(2), 89-98.
- Dubey, R., Altay, N., Gunasekaran, A., Blome, C., Papadopoulos, T., & Childe, S. J. (2018). Supply chain agility, adaptability, and alignment: empirical evidence from the Indian auto components industry. International Journal of Operations & Production Management, 38(1), 129-148.
- 22. Eng, T. Y. (2006). An investigation into the mediating role of cross-functional coordination on the linkage between organizational norms and SCM performance. Industrial Marketing Management, 35(6), 762-773.
- 23. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
- Gandhi, A. V., Shaikh, A., & Sheorey, P. A. (2017). Impact of supply chain management practices on firm performance: Empirical evidence from a developing country. International Journal of Retail & Distribution Management, 45(4), 366-384
- Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014) Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. European Business Review, 26(2), 106-121.
- 26. Hair, J. F., Tatham, R. L., Anderson, R. E., & Black, W. C. (1998). Multivariate Data Analysis (5th ed.). New Jersey: Prentice-Hall.
- Han, J. H., Wang, Y., & Naim, M. (2017). Reconceptualization of information technology flexibility for supply chain management: An empirical study. International Journal of Production Economics, 187, 196-215.

- ISSN: 2197-5523 (online)
- 28. Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods & Research, 11(3), 325-344.
- 29. Holmberg, S. (2000). A systems perspective on supply chain measurements. International Journal of Physical Distribution & Logistics Management, 30(10), 847-868.
- 30. Hoyle, R. H. (1995). Structural equation modeling: Concepts, issues, and applications. Oaks, CA: Sage.
- 31. Huang, G. Q., Lau, J. S. K., & Mak, K. L. (2003). The impact of sharing production information on supply chain dynamics: a review of the literature. International Journal of Production Research, 41(7), 1483–1517.
- 32. Hudnurkar, M., Jakhar, S., & Rathod, U. (2014). Factors affecting collaboration in the supply chain: a literature review. Procedia-Social and Behavioral Sciences, 133(15), 189-202.
- 33. Huo, B., Zhao, X., & Zhou, H. (2014). The effects of competitive environment on supply chain information sharing and performance: an empirical study in China. Production and Operations Management, 23(4), 552-569.
- 34. Jharkharia, S., & Shankar, R. (2005). IT-enablement of supply chains: understanding the barriers. Journal of Enterprise Information Management, 18(1), 11-27.
- 35. Kaliani Sundram, V. P., Rajagopal, P., Bahrin, A. S., & Subramaniam, G. (2018). The role of supply chain integration on green practices and performance in a supply chain context. a conceptual approach to future research. International Journal of Supply Chain Management, 7(1), 95-104.
- 36. Khan, M., Hussain, M., & Saber, H. M. (2016). Information sharing in a sustainable supply chain. International Journal of Production Economics, 181, 208-214.
- 37. Kim, M., & Chai, S. (2017). The impact of supplier innovativeness, information sharing, and strategic sourcing on improving supply chain agility: Global supply chain perspective. International Journal of Production Economics, 187, 42-52.
- 38. Koçoğlu, İ., İmamoğlu, S. Z., İnce, H., & Keskin, H. (2011). The effect of supply chain integration on information sharing: Enhancing the supply chain performance. Procedia-social and behavioral sciences, 24(3), 1630-1649.
- 39. Kopczak, L. R. (1997). Logistics partnerships and supply chain restructuring: survey results from the US computer industry. Production and Operations Management, 6(3), 226-247.
- 40. Lee, C. W., Kwon, I. W. G., & Severance, D. (2007). Relationship between supply chain performance and degree of linkage among supplier, internal integration, and customer. Supply chain management: an international journal, 12(6), 444-452.
- 41. Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International journal of manufacturing technology and management, 1(1), 79-93.

- 42. Lee, H., Kim, M. S., & Kim, K. K. (2014). Interorganizational information systems visibility and supply chain performance. International Journal of Information Management, 34(2), 285-295.
- 43. Lee, K., & Joshi, K., (2016). Importance of globalization in the information technology convergence era. Journal of global information technology management, 19(1), 1-5.
- 44. Li, G., Yang, H., Sun, L., & Sohal, A. S. (2009). The impact of IT implementation on supply chain integration and performance. International journal of production economics, 120(1), 125-138.
- 45. Li, J., Sikora, R., Shaw, M. J., & Tan, G.W. (2006). A strategic analysis of inter-organizational information sharing. Decision Support Systems, 42(1), 251–266.
- 46. Li, L., Su, Q., & Chen, X. (2011). Ensuring supply chain quality performance through applying the SCOR model. International Journal of Production Research, 49(1), 33-57.
- 47. Madlberger, M. (2009). What drives firms to engage in interorganizational information sharing in supply chain management? International Journal of e-Collaboration (IJeC), 5(2), 18-42.
- 48. Mandal, S. (2012). Supply chain performance: a review of the empirical literature. Romanian Review of Social Sciences, 3, 24-34.
- 49. Marinagi, C., Trivellas, P., & Sakas, D. P. (2014). The impact of information technology on the development of supply chain competitive advantage. Procedia-Social and Behavioral Sciences, 147, 586-591.
- 50. Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Information technology and organizational performance: An integrative model of IT business value. MIS Quarterly, 283-322.
- 51. Moberg, C. R., Cutler, B. D., Gross, A., & Speh, T. W. (2002). Identifying antecedents of information exchange within supply chains. International Journal of Physical Distribution & Logistics Management, 32(9), 755-770.
- 52. Monczka, R. M., Petersen, K. J., Handfield, R. B., & Ragatz, G. L. (1998). Success factors in strategic supplier alliances: the buying company perspective. Decision Sciences, 29(3), 553-577.
- 53. Nazifa, T. H., & Ramachandran, K. K. (2018). Exploring the role of information sharing in supply chain management: a case study. Journal of System and Management Sciences, 8(4), 13-37.
- 54. Nazifa, T. H., & Ramachandran, K. K. (2019). Information sharing in supply chain management: a case study between the cooperative partners in the manufacturing industry. Journal of System and Management Sciences, 9(1), 19-47.
- Nguyen, Q. N., & Hoang, T. H. L. (2022). Estimates of the impact of information technology on the tourism supply chain performance in Vietnam. Eastern-European Journal of Enterprise Technologies, 6 (13(120)), 96–106.
- 56. Nunnally, J. C. (1978). Psychometric Theory. New York: McGraw-Hill.

- 57. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw.
- 58. Obi, C. J., Dogbe, X. Q. C. S. K., & Pomegbe, W. W. K. (2020). Assessing the Impact of Relational Governance on the Supply Chain Performances of Manufacturing Firms in Ghana. European Journal of Business and Management, 12(12), 1-11.
- 59. Palmer, J. W., & Griffith, D. A. (1998). Information intensity: a paradigm for understanding web site design. Journal of marketing theory and Practice, 6(3), 38-42.
- 60. Peppard, J., Galliers, R. D., & Thorogood, A. (2014). Information systems strategy as practice. The Journal of Strategic Information Systems, 23(1), 1-10.
- 61. Peterson, R. A. (1994). A meta-analysis of Cronbach's coefficient alpha. Journal of consumer research, 21(2), 381-391.
- 62. Pinto, R., Mettler, T., & Taisch, M. (2013). Managing supplier delivery reliability risk under limited information: Foundations for a human-in-the-loop DSS. Decision support systems, 54(2), 1076-1084.
- 63. Prajogo, D., & Olhager, J. (2012). Supply chain integration and performance: the effects of long-term relationships, information technology and sharing, and logistics integration. International Journal of Production Economics, 135(1), 514-522.
- 64. Premus, R., & Sanders, N. R. (2008). Information sharing in global supply chain alliances. Journal of Asia-Pacific Business, 9(2), 174-192.
- 65. Qrunfleh, S., & Tarafdar, M. (2014). Supply chain information systems strategy: Impacts on supply chain performance and firm performance. International Journal of Production Economics, 147, 340-350.
- 66. Radstaak, B. G., & Ketelaar, M. H. (1998). Worldwide Logistics: The Future of Supply Chain Services: Executive Summary, Conclusions, and Major Findings. Holland International Distribution Council.
- 67. Ramakrishna, Y. (2016). Supply chain management: Large vs. small and medium enterprises (SMEs). In Innovative solutions for implementing global supply chains in emerging markets (pp. 141-151). IGI Global.
- 68. Raykov, T., & Widaman, K. F. (1995). Issues in applied structural equation modeling research. Structural Equation Modeling: A Multidisciplinary Journal, 2(4), 289-318.
- 69. Royle, J., & Laing, A. (2014). The digital marketing skills gap: Developing a Digital Marketer Model for the communication industries. International Journal of Information Management, 34(2), 65-73.
- 70. Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). Shaping agility through digital options: reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27(2), 237–263.
- 71. Sezen, B. (2008). Relative effects of design, integration, and information sharing on supply chain performance. Supply chain management: An international journal, 13(3), 233-240.
- 72. Shore, B., & Venkatachalam, A. R. (2003). Evaluating the information sharing capabilities of supply chain partners: A fuzzy logic

- ISSN: 2197-5523 (online)
- model. International Journal of Physical Distribution & Logistics Management, 33(9), 804-824.
- 73. Siau, K., & Tian, Y. (2004). Supply chains integration: architecture and enabling technologies. Journal of Computer Information Systems, 44(3), 67-72.
- 74. Simatupang, T. M., & Sridharan, R. (2002). The collaborative supply chain. The international journal of logistics management, 13(1), 15-30.
- 75. Simchi-Levi, D., Simchi-Levi, E., & Kaminsky, P. (2003). Designing and managing the supply chain. New York: McGraw-Hill Ed.
- 76. Slater, S. F. (1995). Issues in conducting marketing strategy research. Journal of Strategic Marketing, 3(4), 257-270.
- 77. Söderholm, P., & Norrbin, P. (2014). Information logistics for continuous dependability improvement. Journal of Quality in Maintenance Engineering, 20(3), 249-261.
- 78. Soosay, C. A., Hyland, P. W., & Ferrer, M. M. (2008). Supply Chain Collaboration: Capabilities For Continous Innovation. Supply Chain Management: An International Journal, 13(2), 160-169.
- 79. Srinivasan, M., Mukherjee, D., & Gaur, A. S. (2011). Buyer–supplier partnership quality and supply chain performance: Moderating role of risks, and environmental uncertainty. European management journal, 29(4), 260-271.
- 80. Stock, G. N., Greis, N. P., & Kasarda, J. D. (2000). Enterprise logistics and supply chain structure: the role of fit. Journal of operations management, 18(5), 531-547.
- 81. Tarigan, Z. J. H., Basuki, R., & Siagian, H. (2020). The impact of information technology quality on electronic customer satisfaction in movie industry (Doctoral dissertation, Petra Christian University).
- 82. Thong, J. Y., & Yap, C. S. (1995). CEO characteristics, organizational characteristics and information technology adoption in small businesses. Omega, 23(4), 429-442.
- 83. Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation A review. Information Processing in Agriculture, 7(1), 1-19.
- 84. Trainor, K. J., Rapp, A., Beitelspacher, L. S., & Schillewaert, N. (2011). Integrating information technology and marketing: An examination of the drivers and outcomes of e-Marketing capability. Industrial marketing management, 40(1), 162-174.
- 85. Vanpoucke, E., Vereecke, A., & Muylle, S. (2017). Leveraging the impact of supply chain integration through information technology. International Journal of Operations & Production Management, 37(4), 510-530.
- 86. Vickery, S. N., Calantone, R., & Dröge, C. (1999). Supply chain flexibility: an empirical study. Journal of supply chain management, 35(2), 16-24.
- 87. Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98-110.

- ISSN: 2197-5523 (online)
- Wong, C. W., Lai, K. H., & Cheng, T. C. E. (2011). Value of information integration to supply chain management: roles of internal and external contingencies. Journal of Management Information Systems, 28(3), 161-200.
- 89. Wu, W. M. (2009). An approach for measuring the optimal fleet capacity: Evidence from the container shipping lines in Taiwan. International journal of production economics, 122(1), 118-126.
- 90. Yeh, T. M., Pai, F. Y., & Wu, L. C. (2020). Relationship stability and supply chain performance for SMEs: from internal, supplier, and customer integration perspectives. Mathematics, 8(11), 1902.
- 91. Yun, Y., Kurniawan, A., & Romi, M. (2020, December). Supply Chain Coordination and Integration on Supply Chain Performance in Food Business. In Proceedings of The International Conference on Environmental and Technology of Law, Business, and Education on Post Covid 19, ICETLAWBE 2020, 26 September 2020, Bandar Lampung, Indonesia.
- 92. Zhang, S., Dan, B., & Zhou, M. (2019). After-sale service deployment and information sharing in a supply chain under demand uncertainty. European Journal of Operational Research, 279(2), 351-363.
- 93. Zhou, H., & Benton Jr, W. C. (2007). Supply chain practice and information sharing. Journal of Operations Management, 25(6), 1348-1365.